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Along with power output of the laser system, laser optical quality or beam quality
provides a suitable measure of performance. Power and beam quality are standards for
the comparison of laser systems with each other and against mission requirements. An
understanding of the meaning of beam quality is necessary to completely define laser
performance capability. The current state of our community includes a multitude of
different and not well understood beam quality measures: M*, Strehl ratio, brightness,
power in the bucket, “times diffraction limited,” and mode content determined by a variety
of beam radius measures: half-widths, second-moment radius, widths at 1/e or 1/e?
points, width of primary lobe, etc. Another complication is that different elements of the
community use different measures to evaluate optical quality characteristics. We examine
the assumptions behind common measures of beam quality and compare the various
measures as they relate to beams from lasers emploving stable resonant optical cavities.
We show how the mode composition of a beam depends on prior determination of beam
radius and how the term “times diffraction limited” can mean different things depending
on the method used to measure beam radius. We show the ambiguities that arise between
certain classes of beams and measures of beam quality and advocate for a laser beam
quuality standard that relates directly 1o mission requirements.
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mode coefficient

diameter

measured spot size

electric field

natural base, 2.7128. ..

focal length

Hermite polynomial

irradiance (radiometric nomenclature) and/or intensity
(physics nomenclature)

normalized irradiance

summation index

knifc edge function

azimuthal mode index for Laguerre~Gaussian functions
number

x index for Hermite—(aussian tunctions

laser mode quality

a laser beam quality measure

measured; y index for Hermite—Gaussian functions
power

ideal power in the bucket

measured power in the bucket

power fraction; radial mode index for Laguerre—Gaussian functions
ideal power fraction in the bucket

measured power fraction in the bucket

radius

Strehl ratio

source

transverse electromagnetic

the nth, mth TEM mode

target

orthonormal basis function

measured mode radius

beam radius

bcam waist

times the diffraction limit

transverse distances

axial distance

Raylcigh range

beam quality

bandwidth

Kronecker delta function

rms wave-front distortion

divergence angle of envelope

angle

beam divergence for a circular profile

beam divergence of a circular Gaussian profile

beam divergence in the x or y direction of a Gaussian profile
beam divergence measured at the lens of a Gaussian profile
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24 ROSS AND LATHAM

Ogti beam divergence measured at the lens in the x or y direction of a Gaussian
profile

& beam divergence of a higher-order Gaussian mode

0; beam divergence in x or y direction

O beam divergence of a TEMyg Gaussian mode, same as 6,

A wavelength

v frequency

T 3.14159...

G variance

¢ azimuthal cylindrical angle

19 solid angie

1. Background

The output of a laser is nearly monochromatic and extremely coherent. Narrow linewidth
or long coherence length is the primary operational characteristic of a laser, and it allows
the laser output beam to be focused to a tiny spot. For a thorough discussion of formal
coherence theory and relationships, see Refs. 1 and 4. The optical quality or beam quality
of a laser is a mcasure of the laser’s focusability. More important, if the optical quality
of the laser is excellent, the laser beam is controllable and understandable. Many solid-
state lascrs employ a resonant cavity that produces a beam profile made up of a series of
Hermite— or Laguerre—Gaussian modes. For the case of a stable optical resonator, the laser
focusability is compared to the focusability of 4 monochromatic field with the lowest-loss
Gaussian beam spatial profile as an ideal standard to determine its optical quality. If the
electromagnetic field representing the modes of the laser is exactly known, the shape and
power in the beam could be evaluated anywhere within the focal volume of that beam.
However, all of the parameters of the beam are not generally measured. Moreover, & solid-
state laser generally includes thermally induced self-focusing effects within the laser gain
material as the laser heats up. Although there are analytic ways to estimate these effects, it
is important for higher laser powers to make an empirical measure of the solid-state laser’s
optical quality under operating conditions to evaluate the actual as-built laser performance.
Laser output power and laser optical quality are the two critical performance parameters
ot a solid-state laser that must be determined as the directed energy community develops
solid-state lasers with higher powers. The purpose of this paper is to explain the meaning
of optical quality and mode quality in basic conceptual terms, so that it is understandable
to a broad spectrum of the laser development community and to point out the assumptions,
strengths, and weaknesses of various measures of laser beam quality to enable an informed
choice of the mission-appropriate measure.

2. Measures of Optical Quality

Optical quality affects a laser beam's focusability. Measures of optical quality are divided
into two categories. The first category is empirtcal or measurable quantities, such as total
laser output power or energy, laser linewidth, focal spot size, far-field peak irradiance, and
encircled power or energy in the focal spot, which is sometimes called the power in the
bucket (PIB). Also included in this category are parameters, which are directly calculated
using these measured values, such as beam divergence, coherence length, coherence width or
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CONSISTENT STANDARD FOR HIGH-ENERGY LASER BEAM QUALITY 25

area, and brightness. These parameters quantify the laser performance empirically without
comparison to a standard. A second category involves relative parameters, which compare
the focusability of an actual laser beam Lo the [ocusability of an ideal standard laser beam,
such as M?, beam quality, mode quality, and Strehl ratio.’

2.1. Beam divergence

Diftfraction is the name given to the angular spreading or divergence of light. A measure
of the diffractive spread of a laser beam is the ratio of the average wavelength to the half-size
of the laser beam. Various expressions for the beam divergence angles® are listed in Table 1.
Experimentally, the focused spot diameter or spot width can be measured for a given laser.
An empirical beam divergence is defined to be the ratio of the spot diameter or spot width
to the distance between the focal plane and lens.

Table 1. Beam divergence angles

Expression Description

Beam divergence Divergence angle in the /th direction, / =x or y, for the
fundamental mode.

6y =27/D, (TEMg; mode) due to a plane wavefront incident upon a rect-

angular aperture of dimension Dy x D,. About 81% of the
total energy is contained in a rectangular spot defined by
these divergence angles.

8.=2.441/D Divergence angle for TEMg, mode due to a plane wavefront
incident upon a circular aperture of diamcter D. About
84.5% of the total energy is contained in a circular spot
defined by this divergence angle.

O, =Dy /f =2)/(Twy) Divergence angle for TEMgy mode in the far field of a circular
Gaussian bcam of waist radius wo. About 86.5% of the total
energy is contained in a spot defined by this divergence
angle. 0, is measured at the beam waist.

By =2wo/f =4)/( Dy) Divergence angle for TEMpg mode of a circular Gaussian
beam. 6, is meuasured at the focusing lens.

bgi =Dy /f =21/(mwy)  Divergence angle in the /th direction, i =x or y, for TEMgp
mode in the far field of a rectangular Gaussian beam. 6,; is
measured at the beam waist.

B =2wo/f =2x/(w Dy)  Divergence angle in the 7th dircction, i =x or y, for TEMyg
mode of a rectangular Gaussian beam. 8,; is measurcd at
the focusing lens.

O =d/f Divergence angle for any laser beam. d; is the measured spot
size, and f is the focal length of the focusing lens.

For 6, (see above) Divergence of the TEMgy Gaussian mode that is the funda-
mental mode for the higher-order mode of interest.

&, =M0, Divergence of the higher-order Gaussian mode.
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Table 2. Short list of mcasures of optical quality

Optical guality parameler

Expression

M and M? factors
M=8,/6,
M 2= 9;’1.3:/ egx.-

Gaussian beam quality
Beam parameter product
Brightness

Total brightness

Spectral brightness

Oy /Oey

M =(Q2p+1-+ 1) for circular TEM,; mode

M, =(2m + 1)}/? in the x direction for rectangular
TEM,,,, mode

M, =(2n+ 1)'/? in the y direction for rectangular
TEM,,,, mode

Be=M

W2

B=P/(AQ)= P/

B, =P/Q=PA, /32

B, = P/(QAV) and B, = P/(A,QAL)

Strehl ratio

Strehl ratio beam quality

Encircled power ratio in
a circle of radius 7,

Total beam ¢uality

Reduced brightness

§S=1In/lo~1—=QaAp/A)? ~ exp[—(Rm A /1)
Be=1/8"*~ 14 (mA/AY ~ expl+(m Ag/r)]
ﬂ = (pid::ul/pucl.uu])l'lz

ﬁ: == niﬁl
By =(1/B)(PA/A) = f1,

2.2. Strehl ratio

Strehl ratio (Ref. 1, Chap. 9.1.3) is most commonly used in the astronomy community.
Astronomers often image point objects located in the extreme far field. Strehl is a ratio
between the peak irradiance of a measured signal and the calculated peak irradiance of an
aberration-free signal. In the laser community, Strehl customarily means the ratio between
the peak irradiance of a laser beam and the peak irradiance of a zero-order Gaussian or
other ideal beam with the same power and beam radius as in Eq. (1):

S — llnax~111casu|‘ed (l)
7 max-ideal

The Strchl ratio is commonly used in the analysis and modeling of optical system perfor-
mance. In the presence of optical aberrations, mirror distortions, gain medium impertections,
and/or beam jitter, the far-field peak irradiance is degraded. If these optical distortions are
small, the ratio of the actual or aberrated far-field peak irradiance [, to the ideal or un-
aberrated peak irradiance Iy is the Strehl ratio S given in Table 2. The Strehl ratio has the
advantage (hat it 1s simple and can be uscful in troubleshooting laser optical performance
problems or during laser design when a particular distortion will potentially be introduced
by the system. An empirical form of the Strehl ratio is given by measuring the actual far-field
peak irradiance and calculating the ideal peak irradiance from the laser output power.

2.3. Brightness

There are many definitions [Ref. 3, p. 239, and Ref. 7, Eq. (4)] of brightness within
the laser and optics community. In general, the brightness B for a coherent laser source
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CONSISTENT STANDARD FOR HIGH-ENERGY LASER BEAM QUALITY 27

of output area A; = Agource and total power P is given by B = P/(A;Q), where £2 is the
solid angle subtended by the area in the far field or observation plane a distance z = f
(f =1 focal length) from the laser source as in Eq. (2). The solid angle is given by
Q= Qlarge[ = A[arge[/zz = ;‘LZ/AS:

P P P P

A_\.Q Asourcc Qtarget Asource Alzu'get A.vAr '
There is no ambiguity in Ay It 18 defined in terms of the hard aperture. This is not the
case with Ager, Which can be defined in terms of second moment, first lobe, or other beam
radius meusure. With suitable care, brightness can be a consistent measure. If one’s mission
is to efficiently put power in a solid angle, such as for laser imaging, detection, and ranging
(LIDAR), tracking, or communications missions, then brightness is the mission-appropriate
measure, It is also customary to make brightness a relative measure by removing power,
in which case it is called etendue. One advantage to brightness and etenduc is that they
are unaffected by the optics of a system. In the absence of aberrations, absorption, and
turbulence, brightness is a conserved property of an optical system. Various expressions for
brightness are given in Table 2, and a discussion of this topic is presented in Ref. &.

B

(2)

2.4. Beam quality A* or mode quality

The primary measurable quantity that determines laser focusability performance is the
encircled energy or power in a small region around the focal spot. Beams propagating from
hard apertures have a well-defined central lobe that determines their focal spot. Soft aper-
tured beams, such as Gaussian modes, do not have a well-defined focal spot, and so measures
such as second moment or 1/e*> must be used. If the power or energy measured in the small
area around the focal spot is #; and the total laser output power or energy is £, the fraction
of power or energy delivercd by the laser to the focal spot is p = P/ P. The fractional power
p or energy in the far-field focal spot is a readily measurable and meaningful quantity. If the
laser is operating in a single lowest-loss mode, the fractional power can be near the maximum
obtainable for some ideal standard waveform. For auniformly illuminated circular aperture,
p 720.84. For a rectangular beam geometry, p 2= ().81. For the lowest-order Gaussian beam,
p ~0.86 by the | /¢ criterion. The beam quality A is defined to be the square root of the ratio
of the fractional power in the far-field spot for an ideal standard beam to the fractional power
in the actual laser beam, that is, 8 = (Pidet/ Pact)'/*- B = 1 il the actual beam has the same
far-ficld power as the ideal standard. The physical mechanism that determines the mode
structure of the laser beam and the focused beam spread is diffraction. For 8 =1, the laser is
said to be diffraction-limitcd. The Strehl ratio beam quality g, is given by B = (1/5)!/%. The
bare cavity modes of a stable resonant cavity are Gaussian beams. For a single higher-order
Gaussian mode, the beam waist is M times the beam waist of the lowest-loss Gaussian beam,
the TEMy; mode. The far-field peak irradiance and the power within a small area around the
focal spot is reduced by a factor of M2, that s, the Gaussian beam quality B, is related to M 2
by B, = (M2 = M. M? or B, provides a meaningful measure of the optical quality when
the beam structure consists of some combination of the Gaussian modes.*'® The product of
beam waist times far-ficld divergence is known as the beam parameter product and is another
measure of optical quality that can be related'® to M 2 and is most commonly used to measure
the beam quality of semiconductor lasers. If there are several sources of aberration or beam
degradation, the total beam quality is equal to a product of all individual contributions, so that

A =Tp:.

Journal of Directed Energy, 2, Summer 2006



28 ROSS AND LATHAM

The various measures of determining beam radivs will be discussed later, but it is im-
portant to mention here that most measures of beam quality are highly dependent on the
method chosen to determine beam radius and that there can be considerable variation in
measured beam quality depending on the beam radius definition.

2.5. PIB

PIB is simply the sum of the totul power within a particular area. Usually the area is
circular. There are two basic means for determining the size of the circle. The first is
simply to use the actual size appropriate to a mission targetl. It this is not known or may
be variable, then one may use a size based on the diffraction properties of the laser output
aperture. The radius of the bucket is called r,. A discussion of how r; might be chosen
for a particular definition of beam quality is given in a later section. The normalized PIB
(NPIB) can be caleulated as the fraction of output power that ends up inside the target
circle:

27

NPIB — f(; .[l‘)“ Locwal(r, @)rdrde
f[]oo fozﬂ Lcwa (7, @)rdrdg

= Puctual - (3)

Note that the NPIB for some “ideal” beam js given by Eq. (3) with actual replaced by
ideal. If the ideal beam is chosen to have the same total power as the actual beam, the ratio
comparing the power inside the target circle to an ideal beam is given by

(;.b '['027’ Iauuml (}‘, ¢)rdrd¢ - Puactual _ i

PIBR = 2010 5
o Jo” facwal(r. @)rdrdg Pidea B°

(4)

where PIBR is rclative PIB. The ratios are useful for comparing the efficiency of diflerent
systems but may lead to disagreements over the basis of comparison. Promoters of stable
resonators will likely want a PIB based on an ideal low-order Gaussian beam that raises
all the ambiguities in determining the characteristic radius of an appropriate comparison
beam. Those working with unstable resonators will likely want a comparison with a flattop.
The actual power is, of course, what ends up accomplishing the mission and represents the
bottom line. In the comparisons that follow, we use Eq. {(4) with a target circle equal to three
times the second-moment radius.

2.6. Comparison of beam quality measures

Figures 1-3 show comparisons of M?, Strehl ratio, brightness, and PIBR for various laser
beams, first, to illustrate that these measures of beam quality are distinct and ought not to
be conflated in our thinking, and second, to provide some insight to the researcher to decide
which measure is appropriate for a given application. For the stable resonator modes in
Figs. 1 and 2, the measures of beam quality were calculated using the z =0 plane and the
z=23,000 m plane for the near and far fields. No atmospheric distortions were included.
The beam itself was chosen to have a z =0 (near field) second-moment radius of 3 cm.
M? was calculated from the mode coefficients using Eq. (26). M? is always greater than
or equal to 1 and will be shown with numbers on the right-hand scale. The Strehl ratio,
brightness, and PIBR were scaled to make their maximum valuc 1 and are shown with
numbers on the left-hand scale. The Strehl ratio was calculated from the peak irradiances
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Fig. 1. Comparison of beam quality measures for a beam composed of TEMiy and TEM,
modes.

of near- and far-field beams. The brightness used is a relative brightness, sometimes called
etendue, based on the physical aperture size in the near field and the second-moment beam
radius in the far field. This was so that the brightness would have a maximum value of
1 and would fit on the same graph as the othcr measures. PIBR was calculated using the
total power inside a circle with radius equal to three times the second-moment waist of the
zero-order Gaussian beams using Eq. (4). This was done to provide a fair comparison since
the zero-order Gaussian beams in the rest of the study were assumed to come from a hard
aperture with radius three times their second-moment waist.

Figures 1 and 2 show M?, Strehl ratio, relative brightness, and PIB as a function of
percent of higher-order modes. The left-hand sides of thesc figures are for pure zero-order
Gaussian modes, TEMgy. and the right-hand sides are for pure first-order, TEM, and
pure TEM o + TEMg; “donut” modes as shown later in Fig. 11. Figure 1 shows that as the
percentage of the beam that is first-order mode increases from 0 to 100%, M? increascs
from | to 3, the Strehl ratio drops from 1 to 0, and relative brightness decreases to ~13%,
while relative PIB decreases to about 55%. Figure 2 shows that as the percentage of the
beam that is donut mode increases from 0 to 100%, M? increases from 1 to 2, the Strehl
ratio drops from 1 to 0, and relative brightness decreases to ~25% while PIB decreases to
~88%, Comparing two systems [or suitability to a delense mission, is a donut mode 50, 0.
25, or 88% as good a beam as a zero-order Gaussian? Is a TEMy, beam 33, 0, 13, or 55%
as good a beam as a TEMgo Gaussian? The differing measures of beam quality clearly do
not measure the same thing.

Figure 3 shows a comparison of various beam quality measures vs. the outcoupling
size. Tt is important to emphasize that M 2 is based on the second-moment measure of
the beam radius. Theoretically, second moment requires an infinite plane: all information
is significant, and information away from the centroid is quadratically more and more
significant. M? here is calculated from Fourier propagation on a 1,024 x 1,024 numerical
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Fig. 2. Comparison of beam quality measures for a beam composed of TEMy and
TEMp; + TEM, (donut) modes.

array with spacing of (1.2 mm, a total field approximately 20 cm across. The far-field second-
moment radius calculated is a function of this numerical field, similar to the way a measured
M? will be a function of the detector size and noise equivalent aperture, as will be discussed
in the section on experimental foundations of M2, Different systems will measure various
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Fig, 3. Comparison of beam quality measures for a square annulus flattop beam for various
aperlures.

Journal of Directed Energy, 2, Summer 2006



CONSISTENT STANDARD FOR HIGH-ENERGY LASER BEAM QUALITY 31

M? values for the same beam. We thus do not intend to convey that the M2 of a square
annulus flattop is 28. Theoretically, M? is infinitc for all beams from hard apertures. We
do intend to convey that A2 can be measured to be 28 in conditions that match those of
our Fourier propagation code. In Fig. 3, M increascs from ~5 to ~28 as the {ractional
aperture increases from 0.05 to 0.95. The Strchl ratio {compared with that of a square
flattop beam) decreased from 1 to 0.0, relative brightness decreased from 0.25 to 00, and PIB
decreased from 88 to 15%. In comparing a square flattop with a square annulus flattop with
a fractional aperture of 0.4, is the apertured beam 70, 75, 60, or 97% as good a beam as the
square flattop?

3. Foundations of A2

The term M? has developed out of the theory of Gaussian modes. Gaussian modes are
the bare cavity solutions for stable resonant cavities. In this section, the Laguerrc—Gaussian
modes that arc appropriate for radial and azimuthal coordinates will be discussed. The
Cartesian coordinate modes, the Hermite—Gaussian modes, are given below. The higher-
order radial Gaussian modes grow in size as a function of the radial mode index. The radial
size ry, of the nth mode [Ref. 12, Chap. 7.5, Eq. (44)] is approximated by

Fn 2N X we, = Mw = w,, ()

where wy is the radius of the lowest-order, zeroth-order, Gaussian, the TEMy, mode. The
Laguerrc—Gaussian modes and Hermite—Gaussian modes are given in Ref. (2 [Chap. 17.1,
Eq. (1); Chap. 17.5, Eq. (40); and Chap. 16.4, Eq. (64)]. We have chosen to labe] the scaling
factor for the mode M for reasons that will be clear in the next section. Sometimes the radial
mode size is labeled w,. The lowest-order Gaussian mode beam radius has a quadratic
profile as a function of axial distance along the center of the beam:

w:w(z)z'wo\fl.f_[g'm"T'u'O)_}:wﬂ ]+[(Z 7RO) :|‘

3 2
A Ty
iR = PR (6)

Ty A

wo = w(zo), Oy =

where wy is the zeroth-order Gaussian beam waist radius, 6, is the zeroth-order Gaussian
beam divergence angle, and zz is the Rayleigh range. The higher-order modes follow a
similar quadratic profile with the beam radius scaled everywhere in z by the scaling factor
M. The M? value or the mode quality is determined by measuring the quadratic envelope
of a particular actual laser beam and finding the fit parameters for a quadratic curve. The
quadratic envelope can readily be calculated for the envelope W(z). The expression for the
quadratic that follows the Gaussian beam envelope is

Oz —z0) 1
Wi(z) = W|]‘/1 + [‘u] , W(z) = Mw(z), (7N
Wy

where the second-moment Gaussian beam radius for the zeroth-order Gaussian is w(z), @
is the divergence of the envelope, and the beam radius for the actual beam, W(z), is taken to
be the scaling parameter M times the zeroth-order Gaussian as given in Eq. (5). The result
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Fig. 4. Determining the parameters for the Gaussian envelope.

for the envelope quadratic function is
Ma

T Wo

M? = %Wu@n, @y = = M6,. 8
Note that we have chosen to label the radius for the zeroth-order beam with lowercase
symbols: 1) beam radius is w(z) and 2) beam divergence is ¢. The quadratic envelope
parameters for the actual measured beam are labeled with uppercase symbols: 1) beam
radius is W(z) and 2) beam divergence is @. Determining the M? value depends on what
particular mcasurement scheme is used and what chotces are made for values within the
fitting process. Usually, the actual beam is a mixture of a few or many Gaussian modes. There
are analytic expressions for the scaling factor for single higher-order modes. However, there
is not a unique Gaussian mode serics solution for a given electric field profile or envelope. In
the absense of any laser fluctuations or noise, three measurements of the beam radius W; and
beam positions z; at three locations are sufficient to determine the quadratic envelope of the
beam if there is no noise or beam fluctuation of any kind. Tn 1:)ractice,5 many measurements
must be taken. If the beam consists of a single higher-order Gaussian mode, the value for
M can be calculated by measuring the sccond-moment beam radius and multiplying by the
mode coefficients as in Eq. (26).

For 2 multimode Gaussian beam, the beam also has a quadratic shape. M? is based on the
comparison of the multimode beam to an ideal TEMgy beam. However, as the number of
maodes increases, the proper beam radius of that ideal TEMy, beam becomes increasingly
hard to determine and creates inherent uncertainty in the measure of M 2 aswill be discussed
below. The irradiance for the one-dimensional Hermite—Gaussian modes, TEM,, modes, is
shown in Fig. 5.

The formula for these modes is given in Eq. (21). Note that the modes increase in
transverse size as the mode index increascs, as in Eq. (5). After normalizing to the laser
power P, the irradiance of the lowest-order Gaussian mode is given by

2P 2 2P
I(r) — _Ze—Zi /1;,2 _ =

19 x2 21
2(, [2(x*+34)] /2 , (9)
Tw Tw

where the beam radius as a function of the longitudinal coordinate z and the beam divergence
angle are given by Eq. (6). Since the higher-order Gaussian modes increase in transverse size
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Fig. 5. One-dimensional Hermile—Gaussian mode irradiances.

with incrcasing index, the irradiance envclope for a higher-order mode or multimode beam
can be approximated by the lowest-loss Gaussian that is larger in radius. By normalizing to
the same laser power, the larger mode envelope is given by

2P 22 M2t 2P =272 ;W2
TM2wt = awzt ’
where the beam radius and beam divergence angle arc given in Egs. (7) and (8). Once again,
the expression can readily be converted to x and y coordinates by using r* = x? 4 y2. For
nonsymmetric cases, the cnvelope irradiance can be written as a product of an irradiance in
x and an irradiance in y that are scaled by M, and M,. In that case. the mode quality value
M?* is a product as follows:

Ty(ry = W = Mu, (10}

M* = MM, (L

The mode quality or M? value is directly related to the quadratic cnvelope of the beam as
discussed in the preceding section. Another measure of optical quality is the PIB as given
in Eq. (3). Here, we take the bucket radius to be the 1/¢? point in the lowest-loss Gaussian
far-field irradiance pattern. At this bucket radius, the PIB in the lowest-loss Gaussian mode
is given by Ref. 12 [Chap. 17.1, Eq. (13); Chap. 17.2, Eq. (24); and Chap. 16.4, Egs. (48)-
(60)1]:

Py=Px(l—e?y;  py=1-¢?~864%. (12)

That is, 86% of the total laser power is delivered into the bucket for the lowest loss mode.
For the larger-radius-maodce envelope, the PIB is given by

Pow=Px(1—e M) py, =19 (13)

Note that Eq. (13) reduces to Eq. (12) for M* = 1. When M? > 1, the normalized PIR is
less than 86%. Finally, the beam quality is usually taken to be the square root of the ratio

T Note that we use a slightly different normalization from thosc in the latter cquations and that the form quoted
does nat include the complex factors. The full form is used in computation but was not cited in this paper for
simplicity. See also Ref. 17, hup://mathworld.wolfram.com/HermitePolynomial.htmi, Eq. (39).
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of the ideal standard beam PIB to the actual beam PIB for the same bucket radius. Thus,
the beam quality of the envelope beam can be given by

o -2
(e ] 1—e
o= =i o

\/ DPom
The transverse envelope function has been used to delermine a “beam quality” based on a
comparison Lo the PIB of the lowest-loss Gaussian beam as an ideal standard. This gives a
definition of beam quality for a multimode Gaussian beam, Asymmetric beams can readily
be analyzed in a similar way.

An important conceptual subtlety is involved in the use of Eq. (13). As one departs from
single-mode content, it becomes less and less clear what the proper radius of the lowest-
order embedded Gaussian is. As one progresses to flattop shapes, there are many different,
reasonable criteria on which to make this comparison, and none of them is totally convincing
because a flattop has a hard aperture while Gaussian modes are all of infinite extent. By
suitable comparison, a flattop can look terrible or very good in comparison to a TEMqg
Gaussian. If we judge each bcam against itself, rather than by a tenuous comparison to an
ideal, then we find that a TEMgy Gaussian is not vastly superior to other beam shapes. For
cxample, a TEMyo Gaussian has 86% of its energy inside a 1/e? bucket while flattop beams
have approximately 77% of their energy inside this radius, yet flattops have an infinite M 2,
The general rule for the use of M? and Eq. (13) is that they apply only to beams that can be
fully and uniquely characterized by a few Gaussian modes. Reference 6 (Sec. 6.4.1, p. 33),
for example, reports that M? is a unique and meaningful measure for stable resonator beams
with nonannular round beams up to M? < 3.2. In the following sections, we discuss some
of the experimental and conceptual problems associated with the usc of M 2,

4. M?*: What Your Beam Analyzer’s Manual Didn’t Tell You

M? is probably the most popular measure of laser beam quality. It is also one of the most
experimentally misused and inconsistently applied measures. Many scientists have their
own pet methods for measuring M?: some use a knife edge; some take one measurement at
focus and one in the far field; some measure the transmission through a single-mode optical
fiber; some relate it to Strchl ratio or other beam quality measures. Many researchers
rely on commercial “black-box” devices and accept the manufacturer’s assurances that the
device actually measures M2. One cannot rigorously examine the methods these various
commercial devices use because they are hidden behind the word “proprietary.” One must
trust the manufacturer’s salcs literature. A proper M? measurement is difficult to take.
Fortunately, there is an international standard® that specifies how the measurement is to be
taken. A proper M?* measurement takes the second-moment beam radius measured in at least
10 places in the far field and through the focus and then fitted to an ideal Gaussian equation
in terms of Rayleigh range, focus location, and M. Further. the experimenter must be able
to understand the sources of uncertainty in the measurement to be able to correctly assign
error values, something sadly lacking from most commercial “black-box™ beam analyzers.

4.1. Tradeoffs

The heart of a beam quality measurement system is the camera. Silicon-based charge-
coupled device (CCD) or charge-induced device (CID) cameras are the most common,
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Fig. 6. Near- and far-field beam measurements.

typically have pixel sizes <10 pm, detect adequalely in the visible and near infrared (NIR),
and are relatively inexpensive. For the midinfrared (MIR), there are screened cameras (with
pixcl bleed) or pyroelectric CCD cameras with large pixels (100 x 100 jem). These cameras
can necessitate the use of very long travel stages due to low resolution. A long travel stage
allows a loose focus, a smaller variation in irradiance as the detector is moved through the
beam, less variation in signal-to-noise ratio, and less stringent requirements on the pixel size
of the camera. These henefits come at a price. Short travel precision stages (<10 cm) are
relatively inexpensive. As the travel distance increases beyond 10 em, the price increases
significantly. These short travel stages give [ocused spot sizcs appropriate for silicon-based
CCD cameras for the visible and NIR but are often inadequate in the MIR, where screened
cameras are subject to pixel bleed and pyroelectric CCD cameras that have very large pixels.
A further implication of stage length is the size of the image in the CCD camera and the
number of pixels across the beam. If, for example, we fill the CCD aperture in the fur ficld,
we may have 3007 pixels across the beam. With a short travel stuge, we may have to focus
down to only 10? pixcls across the beam, with a corresponding decrease in signal-to-noise
ratio. The reliability of an M? measurement is in the near focus and far-field measurements.
Poor signal to noise near focus is a source of error in the final measured value of the beam
radius. Figure 6 shows a sample beam measured in the far [ield and near focus. The accuracy
of the beam radius measurement is far lower ncar focus than in the far field due simply to
several orders of magnitude fewer pixels across the beam. Note the change of transverse
scale in Fig. 6 showing the significant portion of each beam.

4.2. Pseudo-average M*

The measurement of M? is plagued by a number of theoretical-experimental disconnects.
Theoretically, M? is an instantaneous concept. A given wavefront at a given instant can be
assigned an M? value. Experimentally, M? is a time-averaged measurement, Ten measure-
ments with intervening stage movements {ilter changes, and software aperture changes takes
time. The International Standards Organization (TSO) standard specifies that a laser must
be warmed up for at least 1 h prior to measurement. The hope is that the laser will become
stuble enough so that measurements taken on different parts of the wave train will yield an
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average value approximately equal to the instantaneous M2 over the entire wave train. If the
laser fluctuates in power or mode content during the course of the measurement, the resuits
are less valid. If the laser remains constant during measurement but fluctuates afterward,
the results are valid, but not useful, M? is thus inappropriate for single-shot lasers and those
with short run times or even with slow fluctuations in power or mode content, It is also
inappropriate if the measurement is taken under operating conditions different from those
in which the system will be used.

4.3. Second-moment beam radius

There are many ways to define or measure the width of a laser beam. M? is defined
in terms of the second moment of the irradiance. The second moment is calculated by
weighting the measured irradiance by the square of the distance from the centroid of the
beam:

[ (x — 01 (x, y)dxdy
Ty : 15
" Vz ff I(x, y)dxdy (15)

The use of the second moment to measure beam radius creates another theoretical-
experimental disconnect. Theoretically, the second moment is very sound and can be applied
to a wide variety of beam shapes. Experimentally, it is problematic because small amounts
of noise away from the beam are weighted more heavily than the actual signal one is mea-
suring, A number of steps must be taken as a consequence of the choice of second-moment
definition of beam radius. The first is due to the fact that CCD cameras return only positive
signals. An artificial zero must be chosen such that the second moment of the noise is zero.
The second is that no extraneous information should be taken into one’s measurement. Extra
information only contributes to error. Determination of what constitutes “extra information™
will be discussed in the section on noise equivalent aperture.

Another implication of the second moment heavily weighting data from the wings of a
bheam is that annular beams such as those from unstable resonators are measured to have
inordinately large beam radii and suffer in comparison with other lasers. Many high-power
laser systems use unstable resonators. Defining beam quality specifications in terms of M z
for a high-power unstable resonator may give the laser designer an impossible task that will
not significantly enhance the ability of the system to accomplish its intended mission. For
example, take the case of a beam with M2 of 1.0, entirely zeroth order. Compare this with
the beam of M? =2 composed of 95% TEM, mode and 5% TEMaq + TEM>; mode and
a beam of M2 =2 composed of 75% TEMqq mode and 25% TEM,;, as shown in Fig. 7.
The beam in the center has some higher-order noise that will result in 5% of the energy
diffracting away from the intended target. The beam on the right also has an M 2 of 2, the

Fig. 7. M? =1 beam (left) and M? =2 beams (center and right) in the far field.
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same as the beam in the center, but it has severe impact on the shape of the focal spot and
may resull in a loss of up to 25% of the encrgy of the laser. This discrepancy is a result
of the fact that M7 is fundamentally linked with the second-moment measure of beam
radius.

4.4. Noise equivalent aperture

With a beam analysis package of sufficient flexibility, one can experimentally verify that
the measured second-moment radius is a strong function of the soltware aperture put around
the duta returned by the CCD carmera. This is because no matter how carefully one sets the
artificial zero, the second moment of the noise will fluctuate slightly around zero. The
nonzero second moment of the noise will significantly alter the results of the measurcment.
In the results shown in Fig. §, the measured second-moment beam radius for the same beam
from a standard, commercial Nd:YAG laser varies from 0.45 to 0.15 mm, depending on
what software aperture is chosen, plotted as a fraction of the full-width at 1/¢* maximum
beam radius.

The discrete nature of the signals returned from digital cameras has some long-reaching
cffects on the measurement of beam quality. 1f we take a hypothetical case, shown in Fig. 9,
the column averages for an 8-bit camera, the signal returned will fall between 0 and 255.
Further assuming that the appropriate artificial “zero” is at a pixel value of 50, this gives a
maximum contrast of 205:1. A pixel value of 51 is barely significant. A pixel value of 50 is
effectively “zero.” Any information taken beyond the point at which the signal is less than
1/205th of the peak is extraneous and can only contain noise. This defines a noise equivalent
aperturc (NEA), dertved in Eq. (16} assuming a TEMy, Gaussian, that is equal to ~2.3 beam
radii in our example, which must be electronically placed around the CCD image to exclude
parts that can only contain noise. This raises its own problem in that one must know the
beam radius and the mode content to calculate the NEA in order to measure the beam radius
prior to determining M2, which gives only clues as to the mode content. In practice, this
means that the beam radius must be first measured by a non-second-moment method to
correctly set the NEA prior to measuring the sccond-moment beam radius. Unfortunately,
the flat portion of the curve in Fig. 8 and the correct NEA do not coincide. If they did, then
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Fig. 8. Measurcment of second-moment beam radius as a function of softwarc aperture.

Journal of Directed Energy, 2, Summer 2006



38 ROSS AND LATHAM

200 R

Contrast
205:1

150

100 ~

Smallest signal
17/ 265 of peak

50 oo = do

H
bl ?
HiH H

Fig. 9. Image contrast for a hypothetical CCD camera.

et e ot et

o

small errors in predetermining the beam radius would not matter, The correct NEA is on a
sloped portion of the curve, and thus errors in the predetermination of the beam radius result
in errors in the measured second-moment beam radius. Note that the NEA thus defined is the
largest NEA appropriate. A careful characterization of the dark-current noise of the CCD
camera will show a root-mean-square {rms) [luctuation that will likely be greater than the
1-pixel value used here. This will reduce the contrast accordingly. Contrast = (peak signal,
artificial zero)/ max[rms noise fluctuation of camera, 1] . Note that framc averaging can be
used bul does not have quite the elfect that might be desired; it is discussed in Appendix A:
Derivation of Error Terms in M? Measurement.

1

TR o NEA = w/In(205)
contrast v - (16)
NEA = w./In{contrast) = 2.3 beam radii,

Equation (16) is strictly correct only for a TEMy, beam. As higher-order modes enter, the
NEA must be reevaluated based on the new mode content. This places the cxperimenter
once again in the quandary of needing to know what he is attempting to measure in order to
measure it properly. The measurcment of M2 is thus limited to small perturbations on the
basic TEMyo profile. The higher M? is measured to be, the less meaning[ul it becomes.

4.5. Irradiance-dependent beam radius

One further implication of the available contrast in a CCD image is that the NEA is a
function of the peak signal. If the peak of the image returns a pixel value of 200, the NEA
will be ditterent from what it would be if the peak of the image was at 250, due to the change
in contrast of the image. Further, a low-contrast image will have a lower signal-to-noise
ratio and measure the beam radius with greater error than u high-contrast image. This has
relevance to one’s filter set. Neutral-density filters arc commonly used to attenuate the beam
to protect the CCD camera. The ideal case would be a continuous range of attenuation to
keep the peak signal near the saturation point of the CCD camera for all measurements to
maximize the image contrast and keep the NEA constant. Typically, one has a discrete set
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of filter values. The discontinuities in neutral density attenuation provide another source of
uncertainty in the {inal measured value.

4.6. Curve fitting

Once the series of beam radius measurements has been taken, the data must be fitted
1o a quadratic cquation in terms of M?, the beam waist wq, and the focal position zg.
Note that there are two forms of this equation, shown as Eqgs. (17) and (18). The differ-
cnee is in how wuy, the beam waist, is interpreted. If wy is interpreted as the beam radius
of a pure Gaussian TEMy, mode embedded in the beam, then Eq. (17) is used. Tf wy is
interpreted as the smallest measurcd beam radius, then Eq. (18) is used. Since the mea-
surement of M? deals with measured, not theoretical, beam radii, Eq. (18) is the most
common in curve fitting (Ref. 13, p. 8}, while Eq. (17} is the most common in the scientific
literature™:

2
w(z) = Miug + ( ) (z — 200, (17)
T
2 2 M\? Ry
wi ) =wy+ | — ) (z—z0)". (18)
TWp

The 1SO standard doces not specify a numerical method but does recommend weighting
the data points inversely by the variance of each measurement. This presumes that multi-
ple measurements of the beam radius are taken at each position, which further slows the
measurement process. Multidimensional curve fitting is not an casy numerical task, and
available numerical methods are not universally robust and cannot work in an entirely au-
tomated fashion without review by a knowledgeable human being. It is fairly common for
laser technicians to adjust their laser or optic train until their beam profiler gives a decent
result. In other words, they adjust the laser to overcome the problems in curve fitting and
detection in their beam analyzer—opposite from the ideal case of adjusting the beam ana-
lyzer to measure the laser as it is. Decisions must be made on how to weight data points, in
what order to fit for the parameters, what initial guess to use, and which numerical method
to employ. A Levenberg-Marquardt™® mcthod works well with the following procedure:
Iy initial guesses of the smallest measured beam radius and its location for wo and zg and M?
calculated using the divergence angle between the smallest and largest measured spot sizes;
2) an unweighted fit on all three parameters, kecping the result for zg and using the results
for wq and M? as initial guesses for the next step: 3) a fit on wy and M 2 heavily weighted
toward points near focus, keeping the result for wy and using the result for M2 as an initial
guess for the next step; and 4) an unweighted fit on M2, While this method may not be
the one “best” method, it is vastly superior to any algorithm hidden from the experimenter
by the word “proprietary.” A known method can be analyzed and improved. A black-
box method will forever produce results whose validity is known only to the anonymous
developer.

Finally, the method used should provide a means to assign error bars based on the signal-
to-noise ratio of the CCD camera, variance in NEA, variance in beam radius measurements,

YEquation (17) is equivalent to Eq. (7) and Eq. (18) is cquivalent to Eq. (6) using the definitions of Eq. (8).
$Levenberg-Marquardt routines are also implemented in some fitting functions in both Marhemarica and
LabVIEW.
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and discontinuities in the filter sets. M? is commonly quoted to two or three significant
figures since that is what appears on the displays of commercial black-box devices. In fact
M? is typically accurate to slightly better than one significant figurc.

4.7. Summary of noise contributions to measurement of />

Noise on each pixel of a CCD camera contributes to uncertainty in measured beam radius
caused, which in turn causes uncertainty in measured M2. The primary sources of noise are
as follows:

o Discretization error: A CCD camera takes discrete measurements of a continuous
quantity. Measured as 1/resolution of the camera. An 8-bit camera, for example, has
a discretization error of 1/256.

e CCD noise: Gaussian dark noise present on all pixels. Measured as the variance of
readings around an arbitrary zero. The more pixels one has across the beam, the less
of an effect this causes. The variance decreases with the number of measurcments.

e Filter error: Discrete neutral-density filters cause deviation from saturation of the
camera and alter the NEA. Measured as the minimum percent change in filters. If,
for example, the filter set is spaced in tenths of neutral density (ND = 0.1,0.2,0.3,0.4,
etc.), then this source of error is ~10%. For continuous means of attenuation, this
contribution is zero.

e NEA estimation error: NEA must be estimated by using a non-second-moment
method to measure beam radius. To the extent that the alternate method differs from
second moment, the NEA was originally set incorrectly. Owing to dark current noise,
which creates irradiance-dependent beam radins measurements, iteration to elimi-
nate this source of error is not possible. Measured as a theoretical variance between
alternate method and second moment on a noisy beam.

e Laser fluctuation: Measured as a variance. Since one can perceive the beam only via
a CCD camera, this is measured the same way as CCD noise, except with the laser
on.

Total variance in each beam radius measurement from the above sources is as follows:
A .
2 _ pixel 2 2
Cpoam = ln(contrast)(—4 NEAZ + 2 ANEA)( odark) + Ofers

3
2 : e
ANEA =02, 4 +y/In(1 + Afilter’);  0200= In [1 +5 (024 + aliscr)}

A
thzurk-pixel ﬁ (]9)
NEA = noise equivalent aperture, contrast = maximum contrast availablc on a particular
camera (see Fig. 9), Afilter = % difference between filters, dark = dark current noise aver-
aged over the entire beam, dark-pixel = dark current noise per pixel, and w = beam radius.
The derivation of Eq. (19) is presented in Appendix A.

The uncertainty in measuring beam radii causes an uncertainty in the M* result. The
variance in M is equal to the average variance in the data:

contrast

2
Tdark =

LR
Oy = ﬁ Zageumi' (20)

i=1
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These sources of error are far more significant than commonly reported, largely due to
the widespread prevalence of commercial, black-box devices that include ne estimation of
error. As an example, one of the authors reported the M? of a tunable MIR laser source!!
as “less than 2." This was based on the above error analysis and a statistical sample of
M? measurements. Based on the author’s observation and analysis, M? measurements
more reliable than one decimal place are cxceedingly rare. Morc common is 40.3 for
measurements between 1.5 and 3. Those who quote M? =1.651, for example, werc cither
exceedingly careful on an extraordinarily stable laser or did no error analysis at all. A more
honest number might be “M? less than 1.8.7

4.8. Summary and recommendations for the use of A2

M? is a difficult mcasurcment to take properly and is subjecct to several theoretical—
experimental disconnects. The accuracy of a measurement is vulnerable to signal-to-noise
ratio in the CCD camera, fluctuations in contrast ratio, the conlinuity of the filter set used,
and implications of design decisions regarding camera resolution and focusing geometry.
M? measurements from automated black-box instruments are unreliable under any nonidcal
conditions. M? is inappropriate for single-shot, multimode or annular beams and is most
appropriate for laboratory, single-mode lasers with low power fluctuation and long-term
stability. As a rough rule of thumb gained by experience, M? values above 2 are strongly
suspect and M? values above 5 have lost most of (heir meaning. M2 is best used below
~1.5, at which the beam has only one or two modes in more or less predictable ratios. We
recommend that a measure of beam performance directly related to the mission objectives
be selected rather than automatically choosing M2. Tf M? is chosen, then we recommend
that identical measurement apparatus and procedures be used to ensure true compara-
bility. We also recommend that black-box devices not be used without appropriate error
estimation.

5. M?: Underlying Assumptions

The preceding section outlined the experimental difficultics in measuring M2. This sec-
tion will examine the underlying assumptions M? is based on to enable a researcher to
make a wiser decision regarding the use of M? for a particular application. Somc measures
of beam quality, such as brightness or PIB (depending on the way the “bucket” size is
chosen), are absolute measurements; others, such as Strehl ratio and M2, are comparisons.
In the case of M2, there is an implied comparison of a beam with an embedded beam com-
posed entirely of zero-order Hermitc—Gaussian profile. Hermite—Gaussian functions are
important because they are self-consistent solutions of the paraxial Helmholtz equation and
represent shapes that will propagate indefinitely. The mathematical form of the magnitude
of normalized Hermite—Gaussian functions is [Rcf. 12, Chap. 16.4, Egs. (48)—(60)]!

1 174 } 1 x 122 /22 (z)
upx, w(z)] = (;) Hn[ ]e 1*/2u =) 20

\/ 2rntw(z) [ w(z)

1Note thal we use a slightly ditferent normalization from those in the latter equations and that the form quoted
does not include the complex factors. The full form is used in computation but was not ciled in this paper for
simplicity. See also Ref. 17, http://mathworld.walfram.com/HermitePolynomial html, Eq. (39).
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where H,(x) are standard Hermite polynomials (Ref. 15, Chap. 24)** and wiz)=
w2(1 +22/z2) with z, =Rayleigh range = 7w} /4. The normalized u,(x) obeys the
orthogonality relation

0
f Up (X, W (X, WX = Sy (22)
(=9}

The orthonormal relation allows the representation of any arbitrary field profile E(x) in
terms of a series expansion in terms of these functions following the standard practices of
linear algebra:

E(x)=) Cotn(x, ), (23)
where the ficld coefficients ¢, can be determined by the vector projection of u, on E(x):
XA
fo :f E(xu,(x, w)dx 24)
—2C

in one dimension. In two dimensions, the ¢, will be the product of an integral in x and
another in y. Because the modes are orthonormal, they can be used as a basis set for the
expansions of Eq. (23). The set of modes u,, is only for complete, orthogonal basis functions
with respect to modes based on the same mode radius w. There is no unique set of mode
cocflicients that will describe an arbitrary beam shape without prior determination of beam
radius (Ref. 12, Chap. 16.4, p. 646).

5.1. The “best” modal decomposition

Equation (24) shows that to determine the mode content of a given arbitrary ficld, one
must first determine the characteristic beam radius w. Restricting our discussion to the near
field at the plane z =0, that means we must first determine wy, commonly called the beam
waist. The ability to represent an arbitrary shape mathematically with Hermite—Gaussian
modes is unaffected by our choice. There are many reasonable bases on which to determine
the characteristic beam radius wy. Each choice of wg will have a unique set of modes
associated with it. All choices of wo will lead to a series representation of the field. All
will propagate mathematically to the far field. No physically measurable properties of the
beam will be affected by our choice of uy. We must therefore regard the modal composition
of a given beam as not entirely a property of the beam but also of our mathematics. It is
the case that wy is the second-moment radius of the TEMyy order Hermite—Gaussian mode
of a given expansion. This will be true no matter what definition of beam radius for the
entire beam we use. The second moment of the lowest mode in an expansion will not be
the second moment of the entire beam except in the case of a pure, TEMyy mode, and so
a Hermite—-Gaussian expansion only weakly suggests, but does not demand, that we use a
second-moment definition of beam radius for the cntire beam. It remains, therefore, to make
a good determination of 1y based on the physics of the situation. As an illustrative case, we
will examine the Hermite—Gaussian representation of a beamn typical to high-energy lasers.
Figure 10 shows a squarc annulus flattop field shape, such as one might obtain from an ideal
unslable resonator. In this case the field magnitude was arbitrarily set to 1, the beam has a
width of 5 cm, and the inner “hole” has a width of 2 cm.

**Also see Rel. 17, http://mathworld.wolfram.com/HermitePolynomial . html,
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Fig. 10. Square annulus flattop.

Figure 11 shows several Hermite—Gaussian modes that might be used as a basis to
represent the beam of Fig. 1(). The particular modes TEMy,, TEM);, TEMg; 4+ TEMag,
and TEMy + TEMy; were chosen for this figure as they happen to be the modes with the
highest field coefficients by several orders of magnitude for most choices of characteristic
beam radius wy.

Figure 12 shows the field coefficients for the modes of Fig. 11 as part of a Hermite—
Gaussian modal decomposition of the square annulus flattop beam of Fig. 10 as a function
of characteristic beam radius. For reference, the vertical lines in each of the four graphs
of Fig. 12 show the second-moment beam radius, which is the choice that M? is based

TEMgp; Hermite-Gaussian mode . TEM, | Hermite-Gaussian mode

TEMy; + TEM,p Hermite-Gaussian modc (donut mode) TEM,; + TEM,y Hermite-Gaussian mode

Fig. 11. Hermite—Gaussian modes.
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Fig. 12. Field coefficients of a square annulus flattop for scveral Hermite—Gaussian modes
as a function of choice of characteristic beam radius wy.

on. Thesc coefficients were calculated for the z = 0 plane but, as a test, the square annulus
flattop was Fourier propagated to a distance z = 3,000 m and the same modal decomposition
was performed. Within the limits of numerical precision, the shapes of the curves in Fig. 12
were the same at z =0 and 3,000 m. The point of this is to realize that modal composition
is not entirely a property of the beam. but a product of the researcher’s mathematics and
choice of characteristic beam radius. Nothing physically measurable about the beam, mo-
ments, energy, fluence, propagation vectors, focal planes, etc., changes when one chooses
a characteristic radius wg and its accompanying modal decomposition. There are four pos-
sibilities for determining the proper characteristic beam radius wy from the results shown:
first, the peak of the curve of Cy vs. wy; second, the peak of the curve of the coeflicient
containing the most energy, in this case Cyz vs. wp (C3, + C%O has a higher peak value than
cgo); third, the physical size of the aperture in the near field; and last, we could choose the
second-moment or some other measure of beam radius in the near field. For comparison,
Fig. 13 shows the mode composition of a TEMyg (at a particular radius) Gaussian beam as a
function of choice of characteristic radius. As a numerical exercise, this is approaching the

1 0.3
0.8 0.2 0.15
0.1
g 0.6 & o 3 0.1
So.a -0.1 ©
0.2 -0.2 0.05
(i -0-3 0
0 D.02 0.04 0.06 0.08 ¢ 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
w0 ,m v ,m wl,m

Fig. 13. Field coefficients of a TEMgo Gaussian beam for several Hermite—Gaussian modes
as a function of choice of characteristic beam radius wy.
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absurd since we already “know” the mode content of this beam, Experimentally, however,
one never “knows” the mode content in advance and must determine it from the data. n this
case, we digitized a zero-order Gaussian beam with a second-moment radius of 3.33 cm
Irom a hard rectangular aperture 20 cm wide. Depending on choice of characteristic beam
radius, one can have a significant contribution [rom the TEMj and the TEM,» mode as well.
The feature that truly forces us to choose the “correct” radius is the fact that the Cog curve
reaches ~1.0 at a certain radius at which all other modes drop to zero, which corresponds to
the second-moment radius, indicated by the vertical lines. This is a luxury we do not have
with the example of Fig. 10, and there is nothing that will tell us the “correct” characteristic
radius uy of a square annulus flattop.

5.2. M? and “times diffraction limit”

Begin with Eq. (23), apply the formula for second-moment waist, and use the identity! "t

o X X
j qun( )um (—) = w(2)(2n + Ddum.
e wo wo
W2 = zfx2|E(x)|2dx
P P X
= - nCm I f — d
[T e (wﬂ)() x

5 x x
= 5 CnlCm X E tn| — Jum| — Jdx
wWo Wy

= Zc,z,(Zn + l)wg.
W2 = Mw}. (25)

Thus, M? has an easy formula in terms of Hermite—Gaussian mode compositioni*:

M= "c2n+ D). (26)
The last line of Eq. (25) also forms the general relationship for the various “times diffraction
limited” measures. A measured beam area in the far field W? is comparcd with an idealized
or hypothesized beam arca u)g, which is predicted from a measurement of beam area in the
near field. The ratio between the two is the “times diffraction limit” of that beam. This is
illustrated in the first line of Eq. (27):

W? = XDL x w}
AZ
b4

Wonear =

N 2
W? = XDL x( s ) 27)
TT Whear

where W is thc measured beam radius in the far field, wyeq, is the measured beam radius in the
near field, and wy is the ideal waist in the far field; z represents the focal length of the optics

tSee htp://mathworld.wolfram.conyHermitePolynomial.html, Eq. (43).
HReference 14, Eq. (5).
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Table 3. “Times diffraction limited” numbers for square annulus flattop beam of Fig. 10
vs. various methods of measuring beam radius in near and far fields (3 km)

Largest
mode Physical  Second-moment
Wisrtiead  Coo max®  maximum®  aperture radius
Wocar ficld—> 3.58 cm 201 cm 2.5cm 447 cm
Cop max? 2.84 cm 1 0.32 0.49 1.56
Largest 5.05 em 3.16 1 1.54 5.0
mode maximum®
Second-moment 5.37 cm 3.57 1.12 1.75 5.55
radius
Radius ol 3.03 cm 1.14 0.36 0.56 1.79
central lobe®

*See Fig. 12.
*In the casc of the square annulus flattop of Fig. 10, this is the (2,0) + (0,2) mode. See Fig. 12.
“Measured by examination of the far-field pattern after Fourier propagation to the far field.

and A the wavelength. The second line of Eq. (27) comes from Ref. 12 [Chap. 17.1, Eg. (13),
and Chap. 17.2, Eq. (24)] and can be used for illustrative purposes as an approximation to
more formal means of mathematically propagating an aperture or radius to a focal plane.
Each “times diffraction limited” measure is thus tied to one beam radius measurement in
the near field and another in the far field. If the measure of beam radius is chosen to be the
second moment in both the near and far fields, then the “times diffraction limit” is equal to
M?. Otherwise, it is not. It is easy to imagine that the choice of measuring technique can
give rise to a number of “times diffraction limited” numbers that could describe a given
beam.

Table 3 shows the wide variety of “times diffraction limited” numbers we can come up
with depending on the method chosen (o measurc beam radius. We can argue that the square
annulus flattop beam of Fig. 10 is anywhere from 0.32 to 5.55 “times diffraction limited.”
How can anything be better than the diffraction limit? Choose a suitable basis of compar-
ison and one certainly can have a “better than diffraction limited” beam! Table 4 shows a
similar analysis for a zero-order Gaussian beam with a near-field, second-moment radius
of 2 cm.

Through suitable choice of method, we can show that a zero-order Gaussian beam is
from 1 to 47.6 “times diffraction limited.” The point of these cxamples is not to argue
that a zero-order beam is better or worse than a square annulus flattop or that any of the
particular methods of determining beam radius ought to be adopted, bul to emphasizc
that “times diffraction limited” is an absolutely meaningless number unless the methods
of detcrmining beam radius are defined along with it and that “times diffraction limit”
numbers generated by different methods of beam radius arc not comparable. Different
standards for measuring beam radius are not uncommon, and some are unconscious. In
some cases, various measures of beam radius are identical for certain kinds of beams. There
is no difference between half-width-half-maximum and half-width-1/¢?-maximum for a
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Table 4. “Times diffraction limited” numbers for a zero-order Gaussian
bcam vs. various methods of measuring beam radius in near and far fields

(3 km)
w Coo max or Physical
(far field)| second-moment radius  aperture?
Wiear — 2cm 6 cm
Cgo max or 5.08cm 1 9
second-moment
radius
NEAY 11.68 cm 533 47.6

"W follow the 99% criteria (Ref. 12, Chap. 17.1), which corresponds to a phys-
ical aperture three tmes the second-moment radius.

bSce Eq. (16) and Fig. 9. This is chosen in lieu of the first lobe diameter used in
the preceding example.

flattop beam in the aperture plane, but these measures give greatly different results in the
target plane.

All hard-edged beams, such as our example square annulus flattop, have diffraction ripples
extending to infinity in the focal plane. Since there is no such thing as an infinite detector, ail
second-moment measurements on any hard-edged beam are actually limited by the NEA of
the system, thus converting the measure of M? to a closely related “times diffraction limited”
number. It is also common to measurc far-field beam radius by width of the principle lobe.
This is a perfectly reasonable measure of beam radius but converts the measurement from
M? to one of the other “times diffraction limited” numbers. Various beam radius standards
are listed in Tables 3 and 4 and are associated with M2, Strehl ratio, brightness, and “times
diffraction limited.” Often, these measures conflict and are not equivalent.

6. Summary, Conclusion, and Recommendations

We have shown the experimental issues related to measuring M along with the theoretical
underpinnings of M2. We showed that the term “times diffraction limited” is meaningless
without reference to a particular method of determining beam radivs in both near and far
fields. We showed that (he theoretical issues that are clear for nearly zcro-order Gaussian
modes become very confused when dealing with beams typical of high-power unstablc
resonators. We therefore conclude that M? is an appropriatc measure for nearly zero-order
continuous-wave (CW) Gaussian stable resonator beams but is not an appropriate measure
for pulsed, single-shot or unstable resonator beams, nor can stable resonator beams be
compared on any kind of equal footing with unstable resonator beams in terms of a “times
diffraction limited” number. Wc urge that the term “times the diffraction limit” be discarded
in any context in which laser systems are compared against one another.

We also showed that the various common measures of beam quality do not measure
the same aspects of the beam and that they should not become conjoined in our thought
or communication. M2, Strehl ratio, “times diffraction limit,” brightness, and PIB do not
measure the same thing except under very idealized conditions,
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6.1. Mission consistent measure of optical beam quality

It is clear that the high-power laser community needs a measure of laser quality that is
consistent with our mission. An ideal metric would satisfy at least the following criteria:

¢ Single-shot measurement

e Taken at either near or far field but not both

e Not heavily dependent on noise and detector fluctuation

e Not easily subject to obfuscation or argument

¢ Comparc stable and unstable resonators on equal footing

¢ Easily made uniform for comparison between different systems
» Relate directly to the mission requircments

M? meets none of these criteria. The Strehl ratio meets several of the criteria, as does
brightness. The last criterion, of relating to the mission requirements, depends on the mis-
sion. If one’s mission is to have a very high peak irradiance without concern for anything
clsc, then the Strehl ratio is appropriate. If one’s mission is to illuminate a solid angle (as
in LIDAR and communications), then brightness is appropriate. In the high-power laser
directed energy community, our mission is most often to deliver power to a target. That is,
there is a circle of some radius and we wish to get as much power in that circle as possible
for a given laser source. Aside from the matter of the definition of the size of the target
circle, that is the definition of the beam quality measure known as power in the bucket
(PIB). Even recognizing the strong correlation between power delivery applications and
PIB, there is still the problem of the proper basis of comparison. PIB is typically not quoted
as a single number but shown as a curve. Figure 14 shows some sample PIB curves for
the beams shown in Fig. 15. The encircled power (arbitrary units) is shown as a function
of the far-field radius. In this case, all three curves were generated from beams proceeding
from a 3-cm-diamcter aperture without focusing or directing optics to a distance of 3 km
from the aperture. The middle, thick curve represents the far-field PIB of un M? = [.2 beam
composed of zero- and first-order Hermite—Gaussian modes truncated at the /2 w point in
the near field. The lower curve is for a donut mode from the same aperture and having the
same energy content as the low-order Gaussian. The upper curve is for a flattop beam from

-

~J

w
]

-
N -
N ‘
wn w
i
§
i
i
SRR SR |

P S

Encircled Power (arb)
-

radius, (m)

Fig. 14. PIB curves.
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Fig. 15. Flattop and Gaussian becam comparison.

the same size aperture as the low-order beam but with 30% of its peak intensity so that it has
50% more energy conient. Both stable resonator bcams had wgy =1 cm in the near field.
A two-dimensional representation of this is found in Fig. 11. This basis of comparison was
chosen arbitrarily. A flattop beam with the same peak intensity as a zero-order Gaussian
truncated at the /2 w points has five times its energy content and would be inconvenient
to show on the same chart. This does emphasize that a TEMg, mode is very inefficient at
energy extraction from most gain media. If a flattop beam results in a loss of 10% diffraction
efficiency compared to a TEMgg to the far field but delivers five times more power, it is hard
to argue that a TEMyq is the *ideal” beam shape.

The standard PIB graph is an ideal place to construct amission requirements curve (MRC).
First, we notice that lines of constant average power run horizontally and lines of constant
radius run vertically, If the physical effect our mission was dependent on were a function
of average power only, we might stop there. Typically, physical effects are functions of
intensity or field on target. Figure 16 shows the PIB curves of Fig. 14 with lines of constant
imtensity or field drawn in. On a PIB curve, these lines are quadratic in shape. For a given
mission, the minimum radius is decided by an analysis of jitter and atmospheric aberration.
The maximum radius is decided by the target size less jitter. The physics of the laser—target
interaction determines the minimum intensity or field and a MRC is gencrated, as in Fig. 17.
Note at this point how all arguments and speculations about proper basis of comparison
have been done away with. We compare each beam not with a reference ideal but with the
mission requirements based on the physics of the application. Any disputes will be over the
mission requirements, not the beam quality standard.

One unsatisfactory element is left in the comparison of a PIB curve to a MRC curve. That
is, we would like the performance of the system to be reducible to a single number so that
we can definitely state that laser system A is better than system B and by how much. One
way to do this is to take the area of overlap hetween a laser’s PIB curve and the MRC to
generate a “‘mission compliant area” (MCA). This is notionally shown in Fig. 18. The two
shaded regions show thc MCAs for the flattop beam and the Gaussian beam. In the case
chosen, assuming a 2-kW Gaussian beam, the flattop beam (infinite M?) has an MCA of
~50 W/m while the M? = 1.2 beam has an MCA of 12.75 W/m. In the case chosen, we can
conclude that the fiattop beam is approximately four times better a beam than a low-order
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Fig. 16. PIB curve with intensity isolines.

Gaussian for the mission envisioned based on its overall greater window of operation and
the power by which it meets or exceeds mission requirements. The donut mode beam, in
spite of a relatively good beam quality of 2.0, has no MCA for this example.

It will be observed that the net effect of basing a laser beam standard on a previously
determined mission requirements curve will displace the center of argument from the stan-
dard to the mission. Whereas we now argue about both the meaning and propriety of a
laser beam quality measure and the mission requirements, a mission-related standard will
ensure that our deliberations concern the mission requirements. The purpose of a laser
beam quality standard is to ensure that the laser system will accomplish the mission if the
standard is met. Our confusion, deliberations, and debates need to center on what the mis-
sion requirements are. Once that is over, the standard will tell us whether a given system
will meet those requirements.
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Fig. 17. PIB curve sample MRC.
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Fig. 18. MCA for two sample beams.

We realize that each service and mission may have different standards and criteria for con-
structing a MRC and believe that these differences are appropriate. It may become valuable
for each service to determine a small number of standard test missions for general use prior
to determination of exact requirements or for generic evaluation of new technologies. We
have recommended only a general approach to constructing a MRC. The actual approach,
determined for each mission, will include information from the laser itself, beam director,
atmospheric propagation, and target interaction.

7. Appendix A: Derivation of Error Terms in M?> Measurement

Equation (19) represents a fractional or percent variance on each beam radius measure-
ment. This section shows the derivation of its terms except for the laser fluctuation and filter
error, which must be measured directly.

7.1. Discretization and CCD noise

Take the second moment of irradiance plus some discretization error equal to 1/resolution
of the camera (1/256 for an 8-bit camera). In analyzing the error, we remember that the
error occurs on each pixel independently and that therefore the variances add in quadrature,
which means they can be integrated as if the error were a constant under the integral:

/.\'1(i + : 3 )rdrdH - /le-rdrdH
g contrast Nyjyeis NEA-

X 1
+ / x° 3 rdrde. =
) w? contrast Nyixe;s NEA®
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The limits of integration are from the centroid of the beam out to the noise equivalent
aperture (NEA):

NEA, 27 1
Utlziscrclizallixyn = / xZ oxd drd@
0 w? contrast Npixes NEA~

TNEA*A il In(contrast) A pixel
" 4w? contrast TNEA? NEA2 ~  4contrast NEAZ
Likewise, the contribution to beam measurement variance due to dark current noise is

NEA., 2 2 2
N _ T, O darkc _ In(contrast) Apixel O
Udurk-beum X 2 rdrdt = 2

Npixels NEA 4 NEA

(29)

The number of pixels involved in a given measurement Npje =axNEA?/ Apixel. The ratio
of w to NEA is In(contrast). The error term in Eq. (28) is normalized with respect (o the
beam radivs and the radial variable.

7.2. NEA estimation error

Uncertainty in the estimation of the NEA contributes to the overall error in the measure-
ment in several ways in Eq. (19). The error in NEA estimation due to filter error, ANEA, is
calculated as follows, beginning with Eq. (16):

NEA —
—— = y/In(contrast),

/

NEA' + ANEA = 0200 + \/ In[contrast(1 + Afilter”)],

ANEA = 0, 00 + v In(1 + Afilter?).

mcthor

The variance in NEA estimation due to the usc of a non-second-moment method depends,
of course, on the alternate method chosen. The author uses the full-width at the 1/¢? points
(FW1/e* M). The FW1/e? M is that point on a Gaussian where

872(x Jwl? 2

2 2 _ -2
+ T dark + Olaser = € >
2 2
2 _ _1 Inli1— O dark + Plaser
Tmethod = 2 8_2 ’

2
e
2 ~ 2 2
Omethod ~ In [l - P (adark + (r]ascr):|'

7.3. Effect of frame averaging on dark current noise

It may be hoped that averaging over several shots would reduce the effect of dark current
noise, bul such is not the case. We begin by noting that when two Gaussian noise distribu-
tions are added together, the resultant distribution is the convolution of the originals. The
convelution of Gaussians of width ¢ increases as the square root of the number of shots ,/n.
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To distinguish between averaged distributions and single-shot distributions, the subscript 1
will be used to indicate a single shot quantity:

oo 22 2.2 b4 5 2
/ e ¥ e gy =g [ e
o0 2

Thus, the Ggak-pixel inCreases as the /71, Gaark-pixel = v/ Gdark-pisel,1 - This, in turn, affects the
contrast, which varies as 1/,/n, contrast=contrastl/./n. The contrast dictates the NEA,
which will expand as the fourth root of the number of shots, NEA = w./[In(contrast1/ /n)].
Finally, the number of pixels involved in a given measurement N pixels increases as the N EAZ:

wNEA? _ mw? In(contrastl//n)
Apixel Apixel '

Npixels =

We return to Eq. (29) and make the above substitutions:

ANEA®  Ajsan
4contrastNyies  4contrastl’

discretization —

The error in the second-moment waist caused by dark current noise is thus

Aw Apixe]ﬁ
w ¥ 2contrast]’

Whether it is advisable to average over many shots will depend on the noise characteristics
of the laser being measured. Fortunately, the fourth root of number of shots is a slowly
increasing function and the benefit of increasing the number of shots is likely to outweigh
the increased error to dark current noise at least up to a point.

7.4. Sample calculation of error in A2

Take the following sample values®S:

e 8-bit CCD camera with the pixel area of 12 um x 10 um= 120 um?
» Contrast=1:200

o Dark current noise of 10% rms (o2 =0.01)

o Laser noise of 10% rms (o2 = 0.01)

« Filter increment of 10%

» A beam radius of 20 gm at focus, for an NEA of 46 yum

o In the far field, a 1-mum beam radius for an NEA of 2.3 mm

Putting these values into Eq. (19) yields a variance of (28%)? at focus and (27%)? in the
far field. The average variance will be approximately (27%).% This means that if the beam
analyzer returns a result of 1.5, we have a standard deviation of £0.4, and so the result
should be quoted as 1.5+ 0.4. Alternately, M? < 1.9 would be appropriate. In publishing
the results on the system these figures came from, we reported an M2 of “less than 2.”

$8These are actual values from the Fiber Pumped Optical Parametric Oscillator of Ref. 11.
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8. Appendix B: Alternate M* Method: Knife Edge

Owing to the prevalence of alternate methods of M? measurement, some are included
in a brief appendix of the ISO standard. This section will rigorously examine the use of
one of these alternate methods. The ISO standard states that “at least for several cases there
exists a correlation” between the use of a knifc-edge measurement and the use of a CCD
camera. The knife edge refers to the practice of scanning a surface such as a razor blade
across the beam, the result being the one-dimensional integral of the signal one would see
from a two-dimensional CCD camera. The ISO standard recommends scanning the knife
until 16% of the energy reaches the detector and then to the 84% point and measuring the
distance between them. A factor is then multiplied by this distance to calculate the “second-
moment” beam radius. Perhaps this method makes some sense when taking measurements
by eye and hand, but when constructing an automated system it raises some serious issues.
First, every measurement taken by an automated system takes time, as does every stage
motion. It may take a dozen measurements and a root-finding algorithm to locate the 16%
point and the 84% point. Why throw away all the cxtra data? The second issue is that “the
at least for several cases” actually means “very nearly single mode beams.”

8.1. True second-moment knife-edge method

There is no need to attempt to approximate the second-moment beam radius using only
two data points. Judicious use of the calculus method of integration by parts allows the
derivation of a convenient formula that will use all the knife-edge data taken:

f_:f:le(x.y)dydx “[‘ [’ FI s
S| [l
g/_ﬂ [/__ule(x,y)dy}dx}
2 <[f 1<x,>=)] dx'dx

]

= a’[k(a) — k(—a)] — 2 f xk(x)dx. 30)

- a

In the case of N discrete knife-edge measurements, where

a
,-=f T(x;, y)dy, iell...N],
—a
oc 20 ) R N-—-1 a
[ s s @ty 00 =2 Y Atk ki)
20 i=1
can be derived with the trapezoid rule.
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Fig. 19. Comparison of ISO 16-84 vs. second-moment knife edge.

8.2. Comparison of the ISO 16-84 method with second-moment
knife-edge method

During the following discussion we will refer to the ISO recommended method of using
the 16 and 84% points as the ISO 16-84 method. The method using the discrete version of
Eq. (30) will be referred to as the second-moment knife-edge method. We examined a test
case using a modeled beam of known mode composition and then a simulated knife-edge
measurement, which will be processed with both the ISO 16-84 and the second-moment
knife-edge methods to determine whether they really are equivalent.

For the test case, we used a beam composed of zeroth-, first-, and fourth-order modes.
The M? can be easily calculated!® for comparison by M= " ¢2(2n + 1), where the ¢
are the energy fractions of each mode. Figure 19 plots the M? as measured by the ISO
16-84 method and by the second-moment knifc-cdge vs. the calculated M? for the test case
mentioned. The second-moment method used the numerical curve-fitting methods outlined
in the curve-fitting section above. It can be seen that the second-moment knife edge gives
the known M? while the ISO 16-84 method fuils to do so, though it does asymptotically
approach the proper slope.

Within numerical precision the ISO 16-84 method consistently undermeasures M2 and
thus fools the researcher into thinking that he has a better beam than he actually does. If the
method is not specified in a beam quality standard, then the advantage in contract selection
will go to the system that uses the alternate method that erroneously reports the lowest M 2
value.

9. Appendix C: M? and Strehl

The various measures of beam quality all converge for a pure zero-order Gaussian beam.
This fact has led some to conclude that the different measures of beam quality are equivalent.
One common version of this is to equate M2 and Strehl =2, The Strehl ratio is the ratio of the
peak value of a beam vs. the theoretical peak value in the absence of any distortions. It is
commonly used in imaging, in which the cause of deviation from zeroth-order Gaussian is
due to atmospheric distortion or lens aberration. In laser propagation, it may also be due to
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Fig. 20. Comparison of M? and Strehl~? for a zeroth- and first-order beam.

the mode content of the laser, so that the theoretical peak value is that of a pure zeroth-order
Gaussian beam. For very nearly perfect beams, Strehl ™2 is often approximately equal to
M2, Tt is important to know the limitations of this approximation. Both Strehl and M? are
easy to calculate for a hypothetical beam of known mode composition. Figure 20 shows a
comparison of M? and Strehl 2 for a hypothetical beam composed of zeroth- and first-order
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modes. The horizontal axis is the energy fraction of the first-order component of the bcam.
In this case, M? and Strehl = are approximately equal for up to 5% first-order beam, out
to an M? of ~1.1. Figure 21 shows a comparison of M2 and Strehl~2 for 4 hypothetical
beam composed of zeroth-, first-, and seventh-order modes. In this case, the first- and
seventh-order modes are given equal energy content and the horizontal axis is the energy
fraction of higher order modes in the beam. In this case, Strehl 2 sharply diverges from M2
immediately and the two are equivalent only for M2 = Strehl-2 = 1.00. In this particular
case, if Strehl were measured and M? reported, then the heam quality would be reported
as better than it actually is and the laser would not, in fact, perform as well as might be
expected. If the phrase “times diffraction limited” were used, then the underlying method
might remain obscured.

Whether M? is or is not approximately equal to Strehl™? is entirely dependent on the
mode content of the beam. In practice, we can never know the exact mode content. Each of
the different measures of beam quality gives a unique view on the effect of the unknown
mode content of a given beam., It is the authors’ opinion that M2 and Strehl~2 should never
be assumed to be equivalent to one another.

References

'Bom, M., and F. Wolf, Principles of Optics, Pergamon (1975).

2Carter, W.H.. Appl. Opt. 19, 1027 (1980).

3Das, P, Lasers and Optical Engineering, Springer-Verlag, Berlin (1991).

*Goodman, J.W., Statistical Optics, Wiley (1985).

*ISO Standard 11146:1999.

6Johnston, T.E, Jr., und M.W. Sasnett, Hundbook of Optical and Laser Scanning, Chapler 1, “Characterization
of Laser Beams: The M2 Model.”

"Koechner, W., Solid-State Laser Engineering. Springer-Verlag, Berlin, 1996.

8Latham, W.P,, and A. Kar, Laser Optical Quality, 16th International Congress on Applications of Lasers and
Electro-Optics, Nov. 12-17, 1997, San Diego, CA, LIA Proceedings, Vol. 84, Sec. A, pp. 197-206.

INumerical Recipes, Cambridge University Press (1986).

1Phillips, R.L., and L.C. Andrews, Appl. Opt. 22, 643 (1983).

HRoss, T.S., “3 micron Fiber Laser Pumped Optical Parametric Oscillator,” Technica} Digest of the Solid State
and Diode Laser Technology Review, June 2004, MIR-1.

12Siegman, A.E.. Lasers, University Science Books (1986).

13Siegman, A.E., Proc, SPIE. 1224, 1 (1990).

'*Siegman, AE., and S.W. Townsend, IEEE J. Quantum Elec. 29(4). 1212 [Eq. (5)] (1993).

'SSpanier, J., and K.B. Oldham, An Arlas of Functions. Hemisphere, (1987).

'“Weber, H., Proc. SPIE 3267, 2 (199%).

17“Mathworld” —A Wolfram web resource htep://mathworld. wolfram.com

The Authors

Dr. William P. Latham (Pete) completed his Ph.D. in Many-Body Physics in 1976. He
had studied the theory of light scattering from superfluid helium in his dissertation. He then
accomplished a postdoctoral research appointment in light scattering from semiconductor
materials with a picosecond, pulsed laser. After being hired by the Air Force Weapons
Laboratory, he began working on optical resonator theory applied to chemical lasets. He
accomplished the optical cavity design for the chemical oxygen iodine laser that produced
the programmatic beam quality goal. He has performed analyses for most of the large
lasers within the Air Force. He has managed several large laser projects. He has also
contributed his expertise in the area of technology transfer to leverage that process to

Journal of Directed Energy, 2, Summer 2006



58 ROSS AND LATHAM

improve the programs at the Air Force Research Laboratory/Directed Energy Directorate.
He has worked to establish and maintain close working relationships with universities
in many areas of optical physics. He has also contributed leadership in directed energy
education, He has continued to contribute scientific research in the area of light scattering
from materials during his nearly 30-year tenure with AFRL.

Dr. T. Sean Ross is a graduate of the CREOL school of optics and has been with the Air
Force Research Laboratory, Directed Energy Directorate, since 1998. His research projects
have included pulsed and CW parametric oscillators, frequency conversion devices, and
high-power solid-state lasers. He is the chair of the Solid State and Diode Laser Technology
Review advisory board.

Journal of Directed Energy, 2, Summer 2006



	Vol2Num1Ross2.pdf
	Vol2Num1Ross1.pdf
	Vol2Num1Ross.pdf
	img06012016_0024.pdf
	img06012016_0025.pdf
	img06012016_0026.pdf
	img06012016_0027.pdf
	img06012016_0028.pdf
	img06012016_0029.pdf
	img06012016_0030.pdf
	img06012016_0031.pdf
	img06012016_0032.pdf
	img06012016_0033.pdf
	img06012016_0034.pdf
	img06012016_0035.pdf

	img06012016_0036.pdf
	img06012016_0037.pdf
	img06012016_0038.pdf
	img06012016_0039.pdf
	img06012016_0040.pdf
	img06012016_0041.pdf
	img06012016_0042.pdf
	img06012016_0043.pdf
	img06012016_0044.pdf
	img06012016_0045.pdf
	img06012016_0046.pdf

	img06012016_0047.pdf
	img06012016_0048.pdf
	img06012016_0049.pdf
	img06012016_0050.pdf
	img06012016_0051.pdf
	img06012016_0052.pdf
	img06012016_0053.pdf
	img06012016_0054.pdf
	img06012016_0055.pdf
	img06012016_0056.pdf
	img06012016_0057.pdf

	img06012016_0058.pdf
	img06012016_0059.pdf
	img06012016_0060.pdf

