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The particle swarm optimization algorithm is applied to the design of impulse dipole
array antennas utilizing passive straight-wire reflectors. The goal is 10 maximize the peak
squared electric field strength at a specified location in the near field of the antenna for
various driving voliage waveforms. The algorithm relies on a rapid computational engine
for evaluation of currents and near fields that is based on numerical solution of the Hallén
time-domain integral equation. Convergence of the algorithm is shown with improvements
in peak squared field exceeding 100% compared to a standurd near-field focus array
employing elliptical reflector placement.
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Nomenclature

Eﬁw peak squared electric ficld at (xg. Yo, Zo), known as the fitness value
K constriction factor for updating the velocities of the swarm
(Xns Yus @y Ly) location, radius, and length parameters for each reflector wire
(X0, Y0, 20) Cartesian coordinates for the near-field focus location
Vinax maximum velocity for a parameter in the swarm coordinate space
Uk velocity of the kth vector parameter of the nth particle in the swarm
P12 altraction parameters for global best and local best locations

in the swarm
Yk value of the kth vector parameter of the #th particle in the swarm

1. Introduction

Antennas that optimally focus peak impulsive fields into localized regions are of inter-
cst for use in emerging systems that neutralize command and control networks, as well
as remotcly triggered explosive devices. Impulse arrays are a particularly useful class of
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antennas for such missions. Their design involves a complicated matching of the structure
to the excitation wavelorm to deliver the highest peak field within the desired focal Tegion,
Although a rough design can be made using array concepts and time-of-arrival principles,
precise analysis of transient interactions between the array elements is a critical require-
ment for optimization. An optimal design thus requires an accurate computaitional method
coupled to an intelligent search algorithm.

Genetic algorithms (GA) have been applied for several years to optimal antenna de-
sign, typically involving pattern specification and impedance matching over a designated
frequency passband.! Recently, particle swarm optimization (PSQ) was proposed as an
alternative to GA for use in antenna design.> Although GA and PSO approaches both em-
ulate aspects of natural processes, they are implemented quite differently and appear to be
complcmentary in searching the parameter space for an optimal solution.?

2. Computational Procedure

Hallén’s time-domain integral equation (TDIE) is an accurate means of predicting the
induced currents and resultant fields generated by an impulse array antenna. The original
derivation of the Hallén TDIE can be found in Ref. 3, The TDIE was programmed in
MatLab® to provide rapid cost function evaluations to implement the PSO algorithm. The
goal is to find the optimal impulse array geometry that maximizes the peak squared electric
field via its squared magnitude at a specified location, (xq, yo, zo):

Epex = max [EX(xo, yo. 20.1) + E(x0, 30, 20.0) + EXxo, 0. 20.0} . (1)

This value will be termed the “fitness” in the PSO algorithm.

The PSO algorithm is applied here to 5-element and 10-element impulse arrays, each
being driven by two different waveforms. These arrays have a single fixed-dipole radiator
and passive reflective wire elements whose lengths, positions, and radii are varied as part
of the optimization procedure. Initial element layout, as described in Ref. 4, is based on a
parabolic cylinder with the element lengths and radii based on the reflector element of a
Yagi antenna, These “standard” array configurations, which serve as reference values for
optimijzation improvements, are shown in Figs, 1 and 2 for the 5- and 10-element cases.
Wire elements are paraliel and z directed with centers at z =0 and locations specified by
their (x, ¥) coordinates. The driven dipole is located at (0, 0).

The two wavetforms used are an exponential step and a damped sine. The exponential step,
as shown in Fig. 3, initiates at 5 ns, with a 5-ns exponential rise time and a run time of 100 ns.
The damped sine, shown in Fig. 4, starts at 10 ns. It has an exponential decay time constant
of 100 ns and a center frequency of 20 MHz, with a run time of 500 ns. The reference point is
located on boresight at 5 m from the driven element: (xg, vo. zo) = (5, 0, 0) m. The transient
electric and magnetic fields produced at the reference location due to the two excitation
waveforms applied to the standard 5- and 10-element arrays are shown by dashed lines in
Figs. 10,11, 14,15, 18, 19, 21, and 22. As expected, the 10-element standard array produces
a larger field than the 5-element standard configuration for the same excitation.

3. Particle Swarm Optimization

PSO is an evolutionary search technique that was recently proposed for electromagnetic
design due toits ability to optimally solve complex engineering problems with many degrees
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Fig. 2. Ten-element impulse array.

of freedom. PSO finds its basis in the observation that the way that fish school and bees
swarm in their search for food is optimal in nature. A detailed explanation of the PSO
is given by Robinson and Rahmat-Samii.’ This was used as a reference to construct the
optimization of the impulse array antenna. The PSO for the impulse array optimization task
follows the flowchart in Fig. 5. It possesses the following basic steps:
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Fig. 3. Exponential step waveform.

Damped Sinusoid V, (t): &,=0.01; fn=20 MHz

R i i I
00 100 200 300 400 500
TIme (ns)
FFT Magnitude
2000 T T

0 20 40 60 80 100
Frequency (MHz)

Fig. 4. Damped sine waveform.

. Initialize the swarm,

. Evaluate fitness of each particle in the swarm and assign local and global bests.
. Update swarm velocities.

. Update swarm positions.

. Update fitness and local and global bests.

. Check whether search is complete,

Lh o N —

@)}

The first stage is to initialize the particlcs in the swarm. There are four degrees of freedom for

each reflector element that affect ESW at the ficld point (xq, ¥o, o). These are the location
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Fig. 5. PSO flowchart.’

coordinates x, and y,. radius «,, and length L,,. The location of the driven element is
muaintained at (0, 0) while its radius and length are adjusted. In the initial application only
the reflector locations were searched. However, this produced only minimal improvements.
A more significant increase in £2,, is achieved when the lengths and radii are also searched
for all elements.

The search space for an N-element array has dimension M = 4(N — 1) + 2 due to the four
degrees of freedom for each reflector and two degrees of freedom for the driven element.
For the 5-element impulse array, each particle in the swarm will have a “coordinate” vector
of M =18 parameters. Each particle for the 10-element impulse array has a coordinate
location with M = 38 parameters to search.
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The next step is to decide on a reasonable range of values for each parameter, thus bound-
ing the M-dimensional solution spacc. The bounds of the dimensions are set as follows:
X, € (=10, 0); v, € (10, 10); a, € (0.5min{a,}, 1.5max{a,}) and L, e(0.5min{L,},
1.5max{L,}). The min—-max values that bound the radius and len gth of elements is
determined from the parameter set used to define the standard array built using clliptically
distributed locations of the reflectors with lengths and radii of a Yagi array.

Once the solution space has been defined, the swarm can be defined. Each element of each
particle is assigned a valuc that is linearly random within its applicable range of values. For
example, each vector element of each particle contained within the swarm, which represents
the x, coordinate, is assigned a value determined from

Xy = —10+ 10 rand (0, 1), 2

where rand is a random number uniformly distributed between (0, 1). The other parameters
are assigned values in a similar fashion.

The second part of swarm initialization is to assign each element of cach particle a vector
velocity that is linearly random between 4v ;. Robinson and Rahmat-Samii® state that an
optimal vp,y is equal to the expanse ol the solution space in the applicable dimension. For
example, a vector element representing the x,, dimension in a particle would have vy, = 10.

Figures 6 and 7 illustrate the initial layout of the swarm for each of the degrecs of freedom.
As expected, the elements are evenly dispersed between their boundary conditions. The
efficiency of the PSO and the completeness of the scarch depend on the particles being
scattered randomly throughout the solution space,

Since the solution space is extensive, a known optimal solution, such as the standard
design mm Fig. 1, is inserted into the swarm. This allows for a bias toward this known
optimal solution and gives the PSO a good starting point since, as will shortly be shown, the
global best particle affects the search pattern of the entire swarm. Also, with the remainder
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Fig. 6. Plot of the x, vs. y, in the initial 500-particle swarm.
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Fig. 7. Histogram of the distribution of @, and L, in the initial swarm.

of the swarm randomly initialized, the PSO algorithm still performs a complete search of
the solution space despite this bias.

Evaluation of the fitness of each particle is essential to any cvolutionary search, and
the PSO is no exception. The result of the fitness calculation is crucial in forming the
search pattern of the solution space. At this point, Hallén’s TDIE is applied to all particles
in the swarm to produce a value for 2 evaluated at the test point 5 m on boresight
(xo0. Yo, 20} =1(5, 0, 0) m. The goal is to find an impulse antenna array layout that gives
max{£2 .

At this point, it is important to discuss two factors that affect the calculation of the fitness.
The first is collision of elements in the solution space. Because the PSO can consider any
configuration in searching lor a maximum to Eq. (1), there is a possibility that the antenna
elements in a given solution may end up at the same location coordinates. Not only is
this an vnrealistic solution, but it causes a singularity in the code. This necessitates the
verification of separation of antenna elements prior to calculation of particle fitness. A
minimum separation was sct at 20 cm, which is 20 times greatcr than the 1-cm element
radius of the antenna layout in Figs. | and 2. When particles are found to possess antenna
elements in violation of the minimum distance, EZ_, is set equal to zero and the cost function
is not called.

The second issue is the setting of the time interval and the number of time increments
in the calculation. The time interval is essential because it must be suitably long in order
to give the waveform time to build up to a maximum but not so long that the run time is
excessive, The number of time increments determines the number of nodes on cuch antenna
element and is essential to the accuracy of the calculation. However, increased accuracy
equates to a significantly longer run time. Also, care must be taken to avoid setting the
number of time increments too low, cspecially when using the damped sinusoid waveform.
This is because the MatLab code requires that the number of nodes be an odd integer, and
with the node sizc increasing with a decrease in the number of time increments, rounding
of the actual element lengths occurs. The exponential step waveform doces not appear to
be overly affected by the rounding. However, the damped sinusoid requires a much higher
number of time increments to produce consistent results due to its critical requirement for
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antenna clement resonance, One effective way to deal with the requirement for a high time
increment requirement is to run a search with a low number of time increments and find a
crude optimized solution. Then run a search with a higher time increment value with the
crude optimal solution inserted into the initialization of the swarm.

After each calculation of fitness, the PSO builds a vector, called GBest for global best,
that contains the antenna layout that is the best cver encountered by any member of the
swarm. Second, it builds a matrix containing the best antenna layout ever encountered by
each particle of the swarm, which is commonly referred to as LBest, for local best. Since
this is the first evaluation of fitness, each particle’s current position by defanlt forms the
L Best matrix.

To update the velocity of the particles, the procedure in Ref, 5 is used:

V(P + 1) = K{v, i (p) + o1 rand [LBest,, x — ¥, +(p)] + 02 rand {GBest, ¢ — ¥ £ (p)]}.
3

where i, +(p) represents the value of the kth vector element of the nth particle in the
swarm at the pth iteration, v, +(p) is the pth iteration velocity of thc same particle and
vector element, GBest is the value of the kth vector element in the global best vector,
and LBest is the value of the &th vector clement in that particle’s local best vector. K is
the constriction factor, which, as stated in Ref. 5, was optimally determined to be 0.729.
K can be described as a damping cffect that assists in reducing the velocity over time
as LBest converges toward GBest and the search becomes more localized. The parame-
ters p) and p are equal to 2.8 and 1.3, respectively, and describe the attraction between
the particle and its LBest and the swarm’s GBest. When updating the velocity, it is im-
portant to ensure that no particle’s velocity exceeds the vy, in any of its dimensions, If
this occurs, this velocity is simply set equal to vn, for that dimension with its direction
preserved.

To update the particle’s position, the velocity vector of cach particle is added to the current
position, since the time increment is normalized to unity. What must now be verified is that
no particle has exited the solution space in any one of the dimensions. Robinson and
Rahmat-Samii® list three ways to deal with boundary conditions, For this research, the
rcbounding wall method was chosen. The rebounding wall method sets the position of
a particle equal to the boundary in the dimension it has exited the solution space. It also
assigns that dimension a velocity equal to 0.1 rand (0, 1)v,,.c with a direction away from the
boundary.

Now that each particle has a new position, they are again evaluated for fitness in the same
manncr as described above. Once the fitness has been evaluated, the results arc compared
against the results obtained by the GBest. It any particle is superior to the GBest, the GBest
vector takes on this valuc. Il not, the GBest vector stays the same. Similarly, each particle is
compared to its LBest vector. If the fitness of its current position exceeds that of its LBest,
then the current position becomes the particle’s LBest vector.

There are several different ways to terminate a PSO search. The easiest is to give it a
set number of cycles and let it run through this prescribed number. This way is preferred
because there is no critical requirement for speed in this application. However, the workspace
is saved after each cycle, so the progress of the PSO can be examined and exited if the search
stagnatcs.

An example of a converged swarm {its x, and y, portion) is shown in Fig. 8. The GBest
is superimposed on top of the swarm as triangles.
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4. Example Computations

The optimal results were obtaincd by first running a coarse optimization with a lower
number of time increments to ensure that the PSO would quickly calculate the swarm’s
fitness and pass quickly through many cycles. This optimal result was then inserted into
another search that had a greater number of time increments and therefore was more accurate.

Optimizing the 5-element impulse array for the exponential step waveform, as seen in
Fig. 3, rcsulls in the configuration shown in Fig. 9. Resultant E- and H-field waveforms are
shown in Figs. 10 and 11. The max{£32 ) = 0.041, which is an increase of 6().5% over the

E (1) at(xy,2} = (5,0.0)

Exponential Step - Rise Time = 5 ns
02 T T T T

QOB |---mmm - mmmmemdcm e e e .:v......

E_{t) (Vim}

Cptimal 5 Element Layout
----- Standard 5 Element Layout i
0 20 40 80 80 100
Time {ns}

Fig. 10. Comparing E-fields for standard (Fig. 1} and optimal (Fig. 9) 5-clement arrays
with the exponential step waveform.
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Time {ns)

Fig. 11. Comparing H-fields for standard (Fig. 1) and optimal (Fig. 9) 5-element arrays
with the cxponential step waveform.
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result obtained for the standard 5-element impulse array as shown in Fig. 1. It cven exceeds
the max{E2, .} generated by the standard 10-element impulse array layout by 30%. The
H-field wavelorm also increases the magnitude squared by 67% over that of the standard
5-element array.

It is important to prove the consistency of the results by running the simulation with
different time increments. As seen in Fig. |2, changing the number of time increments

does not have a significant effect on the results for time increments above 100. Even

E (0 at (xy.2) = (5.0,0)
Exponential Step - Rise Time = 5 ns

E,(t) (V/m)

— 500 time increments
————— 400 tsme increments
------ 300time increments

02l e 100tima increments | W : S
—————— 2001imes incrsments : : ;
50 55 60 85 70 "
Time (ns)

Fig. 12. Waveform peak for optimal 5-element array with different time increments when
driven by the exponential step wavetorm.
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Fig. 13. Optimal 10-element impulse array for the exponential step waveform.
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the waveform generated with 100 time increments is fairly close to the more precise
answers.
Next the | 0-element impulse antenna array was optimized for the exponential stcp wave-

form. The resulting layout is shown in Fig. 13, with compuled E- and H-field waveforms
in Figs. 14 and 15. The max{E2, } = 0.062, which is an increase of 96.5% over the result
obtained for the standard 5-element impulse array as shown in Fig. 2. The H-ficld waveform

is increased in magnitude squared by 83%.
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025 : .
02 0 20 40 60 80 100
Time (ns)

Fig. 14. Comparing E-ficlds for standard (Fig. 2) and optimal (Fig. 13) 10-element arrays
with the exponential step waveform.
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Fig. 15. Comparing H-fields for standard (Fig. 2) and optimal (Fig. 13) 10-element arrays

with the exponential step waveform.
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Fig. 16. Waveform peak for optimal 10-clement array with different time increments when
driven by the exponential step waveform.
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Fig. 17. Optimal 5-element impulse array for the damped sine waveform.

Again, we can demonstrate the consistency of the results by running the simulation with
different time increments. As scen in Fig. 16, changing the number of time increments does
not have a significant effect on the peak of the waveform, especially when it is set equal to
or greater than 300 time increments.

Optimizing the damped sine waveform, as seen in Fig. 4, results in a S-element impulse
array as shown in Fig. 17. E- and H-field waveforms are shown in Figs. 18 and 19. The
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Fig. 18. Comparing E-fields for standard (Fig. 1) and optimal (Fig. 17) 5-element arrays
with the damped sine waveform.
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Fig. 19. Comparing H-fields for standard (Fig. 1) and optimal (Fig. 17) 5-element arrays
with the damped sine waveform.

Journal of Directed Energy, 2, Spring 2007




270 BRINKMAN AND MORGAN

» 10 ! T T T T !
. a S .
£ 'S E a

2 0 Ao Yans [
ot A ; :

E LY T LTI ET A ... 5 J
5 F

> :

Verticte Axis - meters

10

Length - meters Down Range - meters

Fig. 20. Optimal 10-element impulse array for the damped sine waveform.

E (1) at {x,y.2) = (5,0,0)
Damped Sine - a, =001 fo =20 MHz

I Optimal 10 Element Layout
i ===« Standard 10 Element Layout| |

E/t) (V/m)

0 100 200 300 200 500
Time {ns)

Fig. 21. Comparing E-fields for standard (Fig. 2) and optimal (Fig. 20) 10-element arrays

with the damped sine wavcform.

2

max{ £} =0.7362, which is an increase of 85% over the result obtained for the standard
S-element impulsc array. The H-lield wavelorm is increased in magnitude squared by 83%.

The 10-element impulse antenna array was optimized for the damped sine waveform
with the layout shown in Fig. 20. The E-field waveform, as shown in Fig. 21, has
max{E2 .} =0.921, which is a 114% increase over the results of the standard 10-element
array. Figure 22 shows the H-field waveform, which increased in magnitude squared

by 113%.
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H (hat (xy.z) = (5,0.0)
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Fig. 22. Comparing H-fields for standard (Fig. 2) and optimal (Fig. 20) 10-element array

with the damped sine waveform.

5. Conclusions

The PSO algorithm has been upplied to the design of a special class of impulse antennas to
maximize the peak transient squared electric field produced at a specificd near-field location.
These parasitic arrays arc formed from parallel wires that have a single element driven by a
specified voltage waveform and several passive wire reflectors. Design parameters arc the
lengths, radii, and two-dimensional planar locations of the wire reflectors. Two different
driving waveforms were considered, with distinct optimal array designs for each. A fast
time-domain integral equation computational engine was used for evaluating performance
during the optimization. Improvements were observed in peak square field cxceeding 100%
compared to a standard near-field focus array employing elliptical element placement.
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