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Effect of Natural Frequencies on
Stresses in Impulsively Loaded
Pressurized Thin-Walled Cylinders
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Since the invention of lasers in 1960, there has been interest in their use for missile
defense. Present interest is in their use for phase-boost intercepts that prevent the
warhead from reaching its target while also preventing the deployment of penetration aids
and/or submunitions. Whereas present programs are based on continuous-wave lasers,
there is interest in powerful pulsed lasers that could burst a booster in a single pulse.
Previous two-dimensional analyses have yielded large differences in results. To resolve
this issue, vibration measurements were made on a pressurized steel tank. Experimentally
measured vibration frequencies and pressure dependence agree with some of the previous
researchers’ results. Three-dimensional vibration modes were investigated theoretically
and applied to a realistic solid-propellant-pressurized booster. Several megajoules of
laser pulse energy are required to damage it, in agreement with those same previous
researchers’ results.
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1. Introduction

There has arisen a large difference in the calculated impulse for a large single-laser
pulse delivered to the side of a thin-walled pressurized cylindrical cylinder to cause the
circumferential strain to exceed the yield strain. The induced strains are associated with
the vibration modes, which depend on the vibration frequencies. In one analysis® a large
impulse was required, but in subsequent analyses>® a much lower impulse was found to be
required. This paper reports on an experiment to determine the modal vibration frequencies
and reexamines various theories of vibration; the experiment suggests a cause of the
discrepancy that is quite interesting. The paper concludes with an estimate of the required
laser pulse energy needed to damage a realistic solid-propellant booster while pressurized,
using the current cylindrical shell analysis, in contrast to the previous analyses.

Received September 17, 2007; revision received February 11, 2008.
*Corresponding author; e-mail: George.Sutton@sparta.com,

© 2008 Directed Energy Professional Society
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Fig. 1. Time history of strain gauge voltage measurements on opposite side of cylinder
from impulse. Note the presence of harmonics by the nonsmoothness of the sinusoid. Time
intervals: 0.0013 s.

Table 1. Mode frequencies of pressurized,
thin-walled cylinder

Frequency (Hz) at pressure (psig):

Mode 0 1,000
First 1,495 1,630
Second 2,399 2,562

2. Experiment

A thin-walled steel cylinder (A = 0.0009 m, length = 0.229 m, and radius = 0.0381 m)
had strain gauges attached to it at azimuthal angles 8 of 30, 45, 90, and 135 deg. It was
impulsed by a hammer at @ = 0 deg, and the output of the strain gauges was recorded and the
frequency analyzed. The vibrations generally damped out in 1/20 s. Two internal pressures
were used, 0 and 100 psig. A typical record is shown in Fig. 1. Two main frequencies were
observed, as shown in Table 1. The predictions of various theories are given in the Analysis
section.

3. Analysis

Animpulse load on the cylindrical side of a thin-walled circular cylinder induces various
modes of vibration. The following three-dimensional (3D) vibrational displacement modes
are used?:

U = Uy, cos(m mx /L) cos nd cos(w,,t),
V = Uy sin(m mx /L) sin nd cos(wpy,t), €))

W = Wy, sin(m mx /L) cos nd cos(wy,t),

where x is the axial direction from one end of the cylinder, y is in the radial direction at
6 = 90 deg, z is radially inward, L is the length of the cylinder, 6 is the clockwise angle
measured from the location of the impulsive loading, w,,, is the angular frequency, and
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Fig. 3. Radial vibration modes of a cylinder.

u, v, and w are the displacements in the axial, tangential (clockwise), and radially inward
directions. Figure 2 shows the nomenclature. These equations do not include any radial
stresses in the shell that are caused by the impulse. If the impulse is delivered in a very
short time, a radial compressive stress wave will be created, which when reflected from
the inner wall of the shell could cause spallation. This has not been observed. But to be
conservative, the impulse times considered here are longer than 100 ws, which is much
shorter than any of the vibration response modes measured and calculated. Figure 3 shows
the radial vibration modes.

From these modes, the strains can be calculated. The expressions for the relevant strains

. 1 w+8v 4 1 +8v 2+ Jw 2+ ou\? (2a)
=-|- Y —|l-w+ = - = — ,
o7 30 ) T 2r2 36 36 36
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Table 2. Frequencies calculated from the cubic equation

Pressure, n, circumferential

psig modal number  1st frequency, Hz 2nd frequency, Hz 3rd frequency, Hz
0 2 1,206 25,900 46,900
0 4 2,158 49,500 84,500
100 2 1,248 25,900 46,900
100 4 2,339 49,500 84,500
14000
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Fig. 4. Comparison of experimentally measured frequencies with shell theory for the un-
pressurized cylindrical steel tank.

ou 1 du\? v\? w\’
ex_8x+2[(8x> +<8x> +<8x>i|’ (26)
where r is the cylinder coordinate with mean radius of the cylinder = a. The Appendix
contains the equations for the dynamic motion.?

To determine the strains, the mode coefficients must be found from the three equations of
motion in the x, r, and @ directions. The mode coefficients are found after the equations of
motion are solved to give the frequencies. Because there are three equations, the equation for
the square of the frequencies is a cubic,? but in Ref. 2, only the lowest of three frequencies
were given. For this experiment, the cubic equation was used to calculate all three (real)
frequencies. These are given in Table 2.

The second and third frequencies were essentially independent of the internal pressure.
It is interesting to note that low frequencies were reported in Refs. 5, 6, and 9, whereas
high frequencies are given in Refs. 3, 5, and 6. (The last did not include bending.) A
comparison of the experimental frequencies with the theory of Ref. 2 is shown in Fig. 4 for
the unpressurized case.

(

FREQUENCY, HZ
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Fig. 5. Effect of internal pressurization on frequencies, 3D case.

Itis seen that the theory of Ref. 2 agrees very well with the experimental lower frequencies
form = 1. The measured frequencies are slightly higher than the predicted frequencies. This
may be caused by the end conditions: in Ref. 2, the ends of the cylinder are unconstrained,
but in the experiment the ends of the cylinder are constrained by the end caps, which has
the result of slightly increasing the frequencies.

The effect of pressurization of the cylinder is shown in Fig. 5. The calculations agree with
the experiment in that the frequencies increase with pressurization. The lowest frequencies
of Table 2 increase with pressure; the higher ones do not.

3.1. Infinitely long hollow cylinders of infinitesimal wall thickness,
unpressurized

Next, a comparison is made of the vibration frequencies for infinitely long cylinders for
which m = 0 with those predicted by Refs. 3, 5, 6, and 9 (Fig. 6). It is seen that both high and
low frequencies are predicted in the various references. The highest frequencies were not de-
tected. The meaning of the high frequencies can be discerned by examination of an infinitely
long cylinder of infinitesimal wall thickness and zero pressure in which there is only v and
w motion and circumferential bending is neglected. The equations of motion reduce to

4 .
(L8] 9
H &

—= — 0 ) Uy -+ nw, =0,
w?* _

o0

'l
,
ny+w, | —=—1]=0,
) ;
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Fig. 6. Comparison of frequencies for an infinitely long cylinder (m = 0). Note the dis-
agreements between various theories.

where a)% = E(1—v?)/ pa?, E is the elastic modulus, v is Poisson’s ratio, and p is the density.
The determinant of Eq. (3) must be zero, from which there are not one but two roots:

2
% _g
2 - kl
Wy
' “)
@y, 2
—2 =n —|— 1.
W,

The zero root was not mentioned previously.3‘4 For the zero root, the linear terms of the
strain relation cancel out, leaving only the nonlinear terms, which gives a low strain for
a given impulse. For this case a given impulse will lead to very low stresses. Hence the
required impulse for damage is very high, as given in Ref. 9. The second root leads to
high frequencies, for which the linear terms are additive. For this case a given impulse will
lead to very high stresses. Hence there is a lower required impulse predicted in Refs. 5 and
6 to achieve excess strain. This is an interesting case, for when at 8 = 0 deg, w may be
moving downward, at # = 90 deg, v is moving upward. It is difficult to understand how
an impulse that drives the perimeter underneath it downward would drive the sides of the
cylinder upward. In fact, Love* states that this mode “would be difficult to excite.”

The smaller root is not zero when bending stresses are included but still remains small,
compared to the two higher roots, as shown in Table 2. Note that for this root, when w
moves radially downward, v is moving downward also. This is more satisfying physically
than when v moves upward, as in the high-frequency case.

The issue of the circumferential vibrational mode was investigated experimentally by
Rayleigh’ on cylinders that were hollow at one end, a bell. He found that the lowest
frequency corresponded to four nodal meridians, which means that » = 2. He did not
state whether there were very high frequencies, of the order of (a/h); in other words,
whether he observed the pure breathing mode. But the Fourier analysis plainly indicates
that mode is excited. Nor did he comment on the n = 1 mode. Note that for the n =1
mode, the two-dimensional frequency is zero and that when the portion of the shell at 6 =0
(where the impulse is applied) moves in the direction of the impulse, so does the portion at
6 = 90 deg, which makes sense because the shell as a whole is moving downward due
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to the impulse. If one accepts the lowest frequency (of the three) as most likely, then the
second-order strain terms are also important. These were used in Ref. 9 and in part 3 of
Ref. 2, except that the term (—w+ 9v/060) was omitted, which makes a 25% difference in
the results.

3.2. Infinitely long hollow cylinders of finite wall thickness, pressurized
For this case, u = m = 0, and the equations of motion?® reduce to

(bZ + )‘) U, + wau =0,

5)
C2Uy + (C3 + }\) w, = 0,
where
h2
by=-n*{1+-—=]).
2 n ( + 12a2>
]’l2
hy=n{l14+ — ),
3= ( it 12a2)
2 ( 2) ©
h all—v%)p
= 1 A
& ”[ "2t E }
h? a(l—v¥)p
— ]t 2 ,
“ "2 " T En
where /4 is the cylinder wall thickness, p is the internal pressure of hollow cylinder, and
2 1 — 2 n
A= wﬂl’r
E

The determinant of Eq. (5) is zero, which results in a quadratic equation for A, the solution
for which is

A

_ (b2 +c3) £ V(b2 + ¢3)* — 4(bacs — bscy) D
5 .

This is irrational for /2 and p > 0. In accordance with the preceding discussion, the smallest
root was chosen. This agreed very well with the results from solving the cubic equation?

when m = 0. However, by taking advantage of the smallness of the terms with /4 and p, an
expansion of Eq. (7) gives accurate results. It is given by

o wimt = DE [ (1 —vHap h?
W =03 2 3 VE 2|

pas(l —v) | (n*+ DEW  12a
Note that for n = 0, 1, the frequency is zero. This is also predicted from the cubic

equation’> when m = 0. With the frequencies determined, the ratio of v, /w, is found
and the circumferential strains are calculated in accordance with Eq. (2).

®)

4. Comparison with Explosive Impulse Tests

A comparison was also made to the SRI explosive impulse tests using the 3D theory. The
parameters for the test were taken from Ref. 3. The tank was a composite, with a diameter
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Fig. 7. Calculated distribution of lowest vibrational frequencies for the SRI test.
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Fig. 8. Temporal circumferential strain history for SRI test.

of 50 cm and a 1-cm wall thickness, and had a layer of rubber on its interior to simulate
the presence of a solid rocket propellant. Accounting for the mass of the simulated solid
propellant (a factor of 6.7 x 1,200 kg/m?), the resulting lowest mode frequency using the
theory of Ref. 2 was 734 Hz, as compared to about ~731 Hz in the experiment.' No similar
comparison was made in Ref. 3, 5, or 6. Composites generally fracture without plastic
deformation.

Figure 7 shows the vibration frequencies for various circumferential modes for m = 1.
The axial distribution of the impulse was not given in Ref. 3; herein it was approximated
by Igsin(zwx/L). Figure 8 shows the time history of the calculated dynamic circumferential
strain for the total impulse of 123.5 N-s.

Because the dominant vibration mode is the breathing mode n = 0, there is not much
variation in strain with circumferential angle 0. At 1/4 of the fundamental frequency cycle,
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Fig. 9. Calculated radial motion history for the SRI test.

the total axial strain is calculated to be 1.36%, which did not cause failure. At 3/4 cycle, the
calculated peak dynamic strain, 0.515%, agrees with the measured 0.50% dynamic strain
for a total of 1.57% that resulted in failure.!

Assuming that there could be (an optimistic) pulse laser coupling coefficient of 10 dynes-
s/], a 1.52-MIJ laser pulse would be needed to achieve this strain for the explosive impulse
distribution used in the test. The maximum axial strain was calculated to be 1.65% at
45 deg and 1/4 cycle, but failure was not observed at this time in the test. If it had been
assumed that the cylinder was infinitely long (m = 0), then for the breathing mode (n = 0)
two frequencies are predicted by the cubic equation for frequency: 0 and 1,436 Hz, in
agreement with Egs. (4) but inconsistent with the measurements. The dynamic strain would
have been 2.67%, which is much greater than the measurements. Thus, it is important that
analyses be based on three dimensions for finite length cylinders, as presented herein.

The radial motion of the cylinder at the longitudinal center is shown in Fig. 9. Note that
for short times, while the portion under the impulse is moving radially inward, the opposite
side has not moved, which is in accordance with intuition.

5. Prediction for a Solid Propellant Rocket Motor Case

As an example of a realistic solid propellant upper-stage rocket booster, the Orbus 6 was
chosen because its parameters are known, as shown in Table 3.

The shell wall density also accounts for the mass of unburned solid propellant, based on
the results of Ref. 3. The 3D analysis was used. It is assumed that the laser wavelength is
0.25 pm, the beam quality is 1.4, the range is 4 Mm, and the beam director diameter is 4 m.
The far field will then resemble a Gaussian of spatial standard deviation width of 0.1575 m.
The pulse causes an impulse of the product of the fluence and the coupling coefficient C,
optimistically assumed equal to 10 dynes-s/J. The impulse causes an initial radial inward
motion given by

phw(®,t =0) = I(6) 9)
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10 SUTTON, KRECH, AND LAUGHLIN
Table 3. Parameters of the Orbus 6 rocket motor
Parameter Value
Material Kevlar—epoxy
Diameter, m 0.804
Length, m 0.574
Elastic modulus, Pa 1 x 10"
Internal pressure, Pa 4.16 x 10°
‘Wall thickness, m 0.00889
Equivalent wall density, kg/m 1,329 x (1+7)
0.0012
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Fig. 10. Calculated radial displacements for an Orbus 6 pressurized rocket motor case.

or
[e.0]
ph D" @, Wy sin(mix) cos(nd) =Io cos § x e~ 27, (10)
n=0,2,3,...

Fourier analysis was used to determine the values of W, and the equations of motion
(5) to find U,,, and V,,, and Eq. (3) to find the strain. The value of the centerline impulse
Iy was chosen as a nominal 1,000 Pa-s.

The axial displacements are shown in Fig. 10. Note that at small times, only the portion
exposed to the impulse moves, whereas later the entire case vibrates. The circumferential
strains are shown in Fig. 11. They appear different from those of Fig. 8 because of the
contribution, in this case, of n > 0 modes. The peak strain is 6.8 x 10™* at 3/4 of the cycle
time for n = 0.

The calculated axial strains are shown in Fig. 12. They reach a peak of 0.00186 earlier,
at ~1/4 of the n = 0 cycle, and this is therefore the more stressing case. The static axial
strain for this case is 0.0094. Assuming a safety margin of 50%, the maximum dynamic
strain is 0.0047, a factor of 2.5 larger than that shown in Fig. 10. Thus, the peak impulse
for failure should be about 2,500 Pa-s. The total impulse is 2702y or 390 N-s. For an
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Fig. 11. Calculated circumferential strains for an Orbus 6 pressurized rocket motor case.
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Fig. 12. Peak dynamic axial stress vs. time for the Orbus 6 rocket motor case.

optimistic laser impulse coupling coefficient of 10 dynes-s/J. this would require 3.9 MJ to
exceed the maximum allowable strain.

6. Discussion

The above analysis extends previous analyses of an impulse on the side of a two-
dimensional pressurized cylinder of infinite length to three dimensions for a pressur-
ized cylinder of finite length. The cylindrical shell analysis results in three vibrational
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frequencies, one low and two an order of magnitude higher. The vibrational frequencies
directly influence the vibration modes and displacements in the various orthogonal direc-
tions, from which the strains are calculated. It is interesting that for the two-dimensional
case there are two vibrational frequencies: one very high and one very low. Although
the amplitude of vibration is inversely proportional to these frequencies, for the high-
frequency mode the two linear terms for strain add so that the strain for a given im-
pulse appears to be larger than for the low frequency. Also, the high-frequency mode
has zero dependence on the internal pressure. For the low-frequency modes, the linear
terms for strain largely cancel each other and the nonlinear terms dominate (except for
n = 0). To resolve the differences, experiments were preformed on a pressurized steel
cylinder. The vibrational frequencies were measured for various internal pressures. The
frequencies and pressure dependence are in accordance with the lowest frequency 3D anal-
ysis. There have been no experimental observations of the two higher frequencies, but
only of the lowest frequency, which was used herein. The comparison of the 3D analysis
with the results of experiments on impulsively loaded pressurized cylinders showed good
agreement.

The application of this 3D analysis to the case of a typical pressurized rocket mo-
tor, the Orbus 6, showed that for a Gaussian impulse distribution, corresponding to
the far-field radiation distribution of a pulsed laser, a total impulse of 390 N-s would
be needed to exceed its probable strain structural capability. If the laser impulse cou-
pling coefficient is an optimistic 10 dynes-s/J, then a laser pulse energy of 3.9 MJ
would be needed. This may be compared with the 1.8-MJ pulse at a cost of $3.89 bil-
lion delivered by the National Ignition Facility laser at Lawrence Livermore National
Laboratory.

There are limitations to the 3D analysis presented above because the ends of the pres-
surized cylinder are free, whereas in the experiment and any application there are end bells
on the cylinder. The next step to further clarify this should be a dynamic finite element
structural analysis, which is beyond the scope of the current paper.

7. Appendix

13— Kk + Kjk — K[ =0

K§ = Ko+ a\fip + asiiy + asii i, + asiis + asi’,

K| = Ki 4 bifip + baft + [n?A2/(1 — v?)?] x fiei, + A4/ (1 — v?)? A2
K; = Ky +[n?/(1 = v, + [20% /(1 — v¥)]iix

k = (pa’/E)w?

iy = pa/2Eh
iy = pa/2Eh
A=mma/L

v = Poisson ratio

n = circumferential mode number

(1 —v2)’ Ko = (1/2)(1 = v)2(1 + v)a* + (172 — v)(h?/12a?) x [\ + n?)*
—2(4 — v)A*? — 8AZn* — 2n® + 4(1 — VDA 4+ 4A%n2 40t
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(1 —v2PK = (1/2)(1 — )A2 4+ n2)? + (1/2)3 — v — 20D)A2 + (1/2)(1 — v)n?
+ (h2/12a%) x [(1/2)(3 — v)(A2 + 1n2)3 4+ 2(1 — v)A* — (2 — vV2)A2n?
—(1/2)3 + v)n* + 2(1 — v)A? +n?]
(1 —v)Ky =1+ 1/2)3 = V)A? 4+ n2) + (h2/12aD[(A2 + n?)? + 2(1 — V)A? + n?]
(1 —v2a; = [(1 — v)/2]n*(m? — 222 — [(1 — v)/2]n* + [v(1 — v)/2]A*
—[(2 = 3v — v?)/2]A%n% — vin — (h2)12a>) (A% + n?){n?)\?
+1(1 = v)/2ln* + van) + [(A 4 v)/21A202[2 — A2 +r? — (A2 +nD)2])
(1 —vH%ay = 2A3((1 — vHA2 + [(1 — v)/2][n? + (n? — A%)?]
+ (h*/12a*)(A? + n2 (A% + [(1 — v)/2]n%})
(1 = v®)2a3 = A2([(3 — v)/21A%n? + [(1 — v)/2]n* + vA?)
(1= vH%as = M (A2 + [(1 - v)/2]n?)
(1 —v?)2ag = [(1 + v)/2A*n%(n% — 1)
(1 —v2)2b; = [(3 — v)/2)n* 4 22202 — n? + VA2 — (h2/12a®)n2 (A2 + n?)
(1 —v2by = [(5 — v)/2]A* + [(5 — 2v)/21A%n% + A2 + (h?/12aP)A>(W* + n?)?
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