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Fluence and Wavelength Dependence
of a Painted Surface Absorptance
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The absorptance of an opaque surface is completely characterized by the surface
bidirectional reflectance distribution function (BRDF). In particular for this study, a
laser-ablated, painted aluminum substrate is characterized in terms of its BRDF. The
sample is exposed to a raster-scanned high-intensity Ti:sapphire laser operating up to a
1-kHz pulse repetition frequency with pulse duration of around 150 fs and pulse energies
up to 650 J at a wavelength of 800 nm. The ablated surface is then characterized in
terms of a measured BRDF at 633, 1,064, and 3,390 nm. In this way the specular and
diffuse nature of the paint can be determined. A novel physics-based semiempirical model
is used to represent the data as a function of laser fluence and wavelength. How the model
can handle such time (fluence)-dependent phenomena is discussed. Such a capability is
essential in representing the light—matter interaction between the laser beam and target.

KEYWORDS: Absorptance, BRDF, Diffuse reflectance, Fluence, High-energy lasers, Specular reflectance

Nomenclature
A area, m>
a albedo
BRDEF($;, ;) bidirectional reflectance distribution function, 1/sr
d slab thickness, m
E, pulse energy, J
E, photon energy, J
Ey damage threshold energy, J
F fluence, J/ m?
Fp fluence threshold, J/m?
f photon frequency, Hz
H(@®,6;) top-hat function

Received December 2009; revision received October 10, 2010.
*Corresponding author; e-mail: Mike.Thomas @jhuapl.edu.

© 2011 Directed Energy Professional Society



190 THOMAS ET AL.

h Planck’s constant

I intensity, W/m?

k index of absorption

M, number of photons

m exponent (in parameterized scatter phase function model)
N normalization factor

n refractive index

il complex index of refraction
PRF pulse repetition frequency, Hz
P(Qi, Q) scatter phase function, 1/sr
Qext extinction efficiency

R Fresnel reflection coefficient
r distance from sample to detector, m
rq detector radius, m

p particle radius, m

tscan ablation scan time, s

o half-angle, rad

Olabs absorptance

Ogca scatterance

Babs absorption coefficient, 1/m
Bsca scatter coefficient, 1/m

y rate factor

np particle size distribution function
6 polar angle, rad

A wavelength, m

) reflectance

T transmittance

O flux, W

¢ azimuthal angle, rad

Q solid angle, sr

® angular frequency, rad/s

1. Introduction

Material damage or processing by high-energy lasers has been studied for a long time.>°

Topics include laser damage of optical components, laser machining (cutting, welding,
etc.), surface ablation, and so on. Damage phenomena can be classified into two major
groups. Short-duration pulses of less than 20 ps cause damage by electron excitation via
multiphoton absorption; at such timescales, electrons have insufficient time to couple to
the lattice during the laser pulse.® This results in energy transfer to the translational motion
of molecules (on a timescale faster than the mechanical relaxation of the system), inducing
localized thermal and pressure increases. When the pressure gradient in the direction normal
to the surface exceeds the mechanical strength of the material, molecules are ejected or
ablated from the surface.’

Generally, long-duration pulses with widths greater than 20 ps cause thermal damage
by target melting and spalling. Specifically, incident laser radiation heats conduction-band
electrons and transfers energy to the lattice. This bulk heating can melt, boil, or fracture the
material.’
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PAINTED SURFACE ABSORPTANCE 191

Of particular interest in this study is high-energy laser coupling into a painted target
by a subpicosecond-class laser as a function of the laser fluence (also exposure time) and
illumination wavelength. This is accessed by determining the surface absorptance by direct
measurement of the surface reflectance (the sample is opaque). A bidirectional reflectance
distribution function (BRDF) model is used to represent and extend the data; the BRDF also
provides the classification of the reflected rays as near specular or diffuse. Furthermore,
the power spectral density (PSD) function can be computed from the BRDF and used to
calculate the surface root-mean-square roughness.*

Over the past several years a variety of BRDF measurements have been collected at
the Applied Physics Laboratory of Johns Hopkins University. The samples include coated
(e.g., painted) surfaces, metals, transmissive windows, and cylindrical fibers (e.g., string).
A set of semiempirical functions have been successfully applied to represent these data.
These bidirectional functions are often non-Gaussian in nature,” which differs from tra-
ditional Legendre-type functions.!3 A power law fall off is typically observed in the
experimental results, especially for diffuse surfaces. The functions presented in this pa-
per are similar to the Lorentz class of functions generally used in spectral line shape
theory.

2. Experiment

A Rustoleum® 1904 gloss white paint sample is exposed to an amplified mode-
locked Ti:sapphire laser operating at 800 nm with pulse duration of approximately
150 fs, pulse energy of 650 uJ, and pulse repetition frequency (PRF) between 12 and
1,000 Hz. The laser is focused to a spot size diameter of 250 ym on the sample and scanned
to create an ablated area 7.15 x 7.15 mm?. Computer-controlled motion actuators/stages
were used to ensure the uniformity of the ablation area. Scan lines across the area were
made at a constant velocity and duration of 3.5 s each; adjacent scan lines were separated
by either 0.20- or 0.15-mm raster steps to achieve laser spot overlap to create a degree of
ablation uniformity. The illuminating fluence F is computed using the following definition:

F = Tscan Ep PRF

Auh ' (1)

where ty,, is the time it takes to scan the ablated area Ay, with pulse energy E,. For the
operating parameters for this particular laser, a PRF of 12 Hz essentially represents an
illumination by one pulse for any given point within the ablated area. In this manner, the
surface evolution can be characterized in terms of the illuminating fluence or the number
of effective pulses that illuminate the target area. The fluence is varied by varying the
laser PRF, and thus a series of ablated areas is created. The absorptance of these areas is
characterized by measuring the BRDF.

A description of a scatterometer/reflectometer (ignoring polarization effects and assum-
ing no azimuthal dependence) used to measure the BRDF over the back hemisphere is
given below. In this case only measurements in the plane of incidence are required. Such
measurements are used to represent a wide variety of materials.

A direct measurement of the incremental backscattered flux A®(8,, 6;) per incremental
steradian A is proportional to the phase function P(6,, 6;) (Ref. 6):

ADG,, 6;)

o AQ BRDF(6;, 6;) = Phem(0:) P (6, 6, @)
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Fig. 1. Experimental setup of a bidirectional scattering measurement to obtain the in-plane
BRDF.

where ®; is the incident flux, BRDF(6,, 6;) is the bidirectional reflectance distribution
function, and ppem(#;) is the total integrated reflectance (TIR). In practice the measured
fluxes are detector voltages. Since there is no dependence on sample rotation about ¢, only
measurements in the 6; direction are required. The incremental angular step size of 6, for
the experiment should be less than 14AQ.

The incremental solid angle AQ can be determined from the experimental geometry as
illustrated in Fig. 1. It is given by the following formula:

AQ =2 (1 — cos Aby), 3)

where Af, is the angle subtended by the detector. For r > r4 (the detector radius), Af, is
small and the following approximation can be made:

r JTl"a'z

PRz
r l:l + (r—d) ]
-
The detector area A, is nrj, and the incremental solid angle viewed by the detector
becomes

AQ=2mr 41—

“)

A
AQ - r—j )

Using this result in Eq. (1) completes the information needed to experimentally determine
the BRDF of a sample.

The apparatus used to measure BRDFs is illustrated in Fig. 1. The source laser beam
is chopped and expanded and focused (using reflective optics) onto a detector mounted
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on a rail, which is in turn mounted on a rotational stage. The sample is mounted at the
center of rotation of the detector-rail system such that the plane of incidence is parallel
with the tabletop. This allows for measurement of the full BRDF, including the specular
reflection. Again, we have made the assumption that scatter is symmetric with respect to
the surface normal (i.e., that the scattered intensity has no dependence on the azimuthal
angle). The detector i$ rotated around the sample and the detector output recorded by a
lock-in amplifier whose reference signal is derived from the chopper. Measurements in the
visible use a silicon detector with a square active area of 0.13 cm?; measurements in the
midinfrared (IR) use an InSb detector with a circular active area of 0.0314 cm?. The typical
distance from the sample to the detector is 30 cm.

3. BRDF Model

All the BRDF experimental data are fitted to physically based models for three primary
reasons. The first is to compensate for limitations of the measurement. For example, the
detector blocks the incident beam at some point in the BRDF depending on the angle
of incidence. This leads to a dropout in the reflected signal. This is a significant effect
for near-normal illumination and leads to an underestimation of the TIR (also called the
directional hemispherical reflectance). Second, for oblique illumination angles the sample
alignment is critical and mounting posts can partially block the reflected beam, leading
to signal distortion. Finally, as the sample plate is rotated from normal to oblique angles,
the illuminating spot grows in the plane of incidence but remains fixed in the direction
orthogonal to the plane of incidence. Thus, the computation of the TIR must take the
resulting reflected beam shape into account because it will not be the same in all directions
of ¢ for all 6;.

Another reason for model fitting is to check the observations against our theoretical un-
derstanding of reflection phenomena. A fundamental quantity modeling surface reflectance
is the complex index of refraction #, given by

n=n-—jk, (6)

where n is the index of refraction and k is the index of absorption. Although all samples
absorb at some level, it is assumed that k < n. Thus, the surface reflectance is typically
dominated by the real part of the complex index of refraction only. In the BRDF measure-
ment results, two distinct phenomena are observed. A percentage of the BRDF is completely
diffuse (or Lambertian) and independent of the angle of incidence, and the remaining por-
tion of the BRDF follows an angle-averaged, power reflection coefficient Fresnel equation
and depends on the angle of incidence.
The following equation defines a bidirectional reflection function®:

dd
aQ,

In this equation, the BRDF(S;, ,, @) is called the bidirectional reflectance distribution
function, €2; is the illumination beam solid angle, €, is the reflected beam solid angle,
and o is the angular frequency. In these definitions of BRDEF, €, covers the backward
hemisphere. BRDF measurements are typically for nontransmitting samples (e.g., mirrors,
painted surfaces). These concepts are illustrated in Fig. 2. Also, in this development the
polarization state of the scattered optical fields has not been addressed. It is assumed that
the observer is not concerned with polarization.

= BRDF(Q;, 2,, 0)®;. (N
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Fig. 2. Geometrical concepts of specular and diffuse components of transmitted and re-
flected light from an illuminated dielectric slab.

The integral of the BRDF over all back reflected solid angles €, is the TIR,

Ohem(€2s) = / 4%, BRDES,, 2,). ®)
hemisphere

Based on this definition, the BRDF is broken down as a product of two factors, the
total integrated quantity and a normalized solid angle-dependent function called the phase
function P, ;(£2;, €2,,;) for reflection and scatter, respectively. The BRDF is now written as

BRDF(£2;, Q) = Prem(S2:) P (2, 2,). ®

Consistent with Eq. (8), all phase functions are normalized according to
/P(Q;, Q,)dQ, =2n / P(6;, ;) sin(6,, 6;) d6, =1, (10)

where the limits of integration cover the back hemisphere. Solving this equation determines
the normalization factor. In this manner, the phase function has the interpretation of a
probability density function. It gives the probability of observing a reflected ray in a
particular direction given a specific incidence angle.

The integrated quantities satisfy the total power law:

T(Q, @) + (4, ®) + otsea($2i, @) + clabs (2, ) = 1, (11

where 7 is the transmittance, p is the reflectance, oy is the absorptance, and ag, is the
scatterance. This is a statement of the conservation of power flow.

It is useful to separate the BRDF into specular (s), near specular (ns), diffuse (D),
and random diffuse (L, Lambertian) components, separately representing the unscattered
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beam (specular) and the scattered light, respectively, as given by the following formula for
reflectance (back hemisphere):

BRDF(2;, Q,, w) = ps(2;, 0)x58(2; + ;) + 0ns (82, ©)Xns Posr (82, 2, @)
+ oo (i, W) Pp, (i, 2, w) + pr(w)xr, Pr (2, w). (12)

It is assumed that these different types of reflected, transmitted, and scattered light are
independent. Specular components (Pg) represent the contributions from the reflected and
transmitted rays for a perfectly flat surface. The law of reflection is applied (i.e., 2, = —€2;)
at the specular point in this case. Near-specular components (P,g) represent weak or
single-scatter phenomena due primarily to surface roughness such that the coherence of
the incident light is maintained. Diffuse components ( Pp) represent the effects of surface
roughness and bulk scatter that is strongly influenced by multiple scatter and is partially
coherent relative to the incident light. The Lambertian components (P},) represents random
rough surface and bulk scatter that is totally incoherent with the incident light. A real surface
will have some percentage of the surface that appears flat and some percentage that is rough.

For a uniform surface with randomly oriented surface roughness and bulk inhomo-
geneities, there will be no dependence in the ¢ direction. Thus, scatter from the sample is
invariant under rotation by the angles ¢; and ¢,, and the phase function is a function of 6;
and 6, only. This is the case for the samples analyzed in this study.

For example, given a passive medium with no surface roughness (i.e., no surface scatter),
no bulk scatter, and a collimated ray bundle with angle 6; incident on the surface, then the
BRDF becomes purely specular; thus

p(6;, 0r, @) = ps(0;, w)8(6; + 6,). 13)
Again the subscript S denotes specular or flat surface terms where the reflected angle
equals the negative of the incident angle and the transmitted angle approximately equals

the incident angle (for nearly parallel surfaces; see Fig. 2). Then the generalized total power
law reduces to the simple formula®

750, 0) + p5(0;, W) + Aaps (B, 0) = 1. (14)
In principle, these deterministic specular terms are a function of the complex index of
refraction for spectrally averaged (that is, the bandwidth of the incident beam washes out
interference effects) polarized light incident on a slab of thickness d, as given by (ignoring
interference, fluorescence, and diffraction)?
[1 = Ri(0, @)][1 — Ra(6;, w)lexpl—Buvs(@)d [cO88, )

0, w) = ,
) | = R,(0;, 0)Ra(6;, 0)exp[—2Baps(@)dd [c0s0,]

(15)

6. o) = R10L0) + Ra(6, @) [1 — 2RO, )] expl=2Bu(@)d/ cos bu]
pstn, @)= I = Ri(6;, @) Ra(6;, ) exp[—2Bus(@)d [ 03 6,

. (16

and
s (6r. ) = [1— R, &)]{1 — exPI—ﬂahs(w)dff.-'os Oal} a7
1 — R(6;, w) expl—Pans(w)d [cos b,]
R(6;, w)isthe single surface Fresnel power reflection coefficient for polarized or unpolarized
light as a function of the angle of incidence @;,wave number, and complex index of
refraction, and B, is the absorption coefficient.
In practice, four types of phase functions are used to represent measured data. The instru-
ment (specular) phase function is represented by the Gaussian profile of the illuminating
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Fig. 3. Comparison of the different phase functions defined in Sec. 3. The near-specular

phase function and the diffuse phase function have the same angular width (5 deg). (In all
cases the illumination angle is 0 deg.)

laser and is chosen to be

(sinf, + sin§;)?

Pinge(0r, 6;) = Ps(6,, 6;) = Nigse(6;, w) eXp [_ﬁ] s (18)
where 0, is the reflection angle, 6; is the incident angle, Ny, is a normalization constant,
and w is related to the beam width. In addition, surface imperfections may result in the
empirical value of ps(6;, @) being less than the theoretical value given in Eq. (16). The near-

specular phase function, based on the generalized Van Cittert—Zernike theorem, is given
by’

(sinf, + sin;)?
Pnspec(era 6;) = anpec(ei, C)exp [“;] O, (19)

(C cos 6;)?
where C is a constant related to the surface roughness statistics. The diffuse phase function
is given by’

[ cos(@;)]" !
[Isin(8,) + sin(@)|]" + [ cos(;)]"

where o is the half-angle of the reflected beam, m is an exponent chosen to best fit the data

(m = 2 for a Lorentz phase function), and Ny is a normalization factor. The Lambertian
phase function is given by

Piitt(6r, 0;, m, &) = Ngigr(6;, ot, m)

cos(@,), (20)

Pram(6)) = %COS(@), @1

where the function is defined on a hemisphere.

The three phase functions defined by Eqs. (19)—(21) are distinctively different in shape,
as illustrated by Fig. 3. The wing region away from the specular point falls off much more
slowly for the diffuse function as opposed to the near-specular function (Gaussian). This
is significant because the Gaussian phase function is commonly applied. However, as the

Journal of Directed Energy, 4, Winter 2010



PAINTED SURFACE ABSORPTANCE 197

next section will clearly demonstrate, the diffuse phase function, as defined by Eq. (20),
provides a superior fit to experimental data (this is especially true for very rough surfaces
with significant bulk scatter, e.g., paints, such as that in this study).

The paper by Duncan et al.! gives some theoretical insight into the phase functions
applied in this paper. It is shown that for Gaussian surface roughness and for near-specular
reflection, the phase function will also be Gaussian. However, if the photon of light is
significantly delayed by the surface roughness or by penetrating a dielectric surface and
then for backscattered to the observer, the phase function can take a power law form similar
to Eq. (20).

To complete the near-specular BRDF model, the following formula for the angle averaged
single surface reflection coefficient is defined’:

2
Rave(6i, o, n) = ./R(H,n) Pus(0, 6;;a) db, (22)
0

where R(0, n) is the Fresnel power reflection coefficient for unpolarized light. To make
Eq. (22) computationally efficient, it is approximated by a top-hat function, defined by

Pys(0,6;) =~ H(@®, 6;)

1 T

— for6; +a < —andf; —a >0
20 2

T
fﬂr('}j +a = 'j)-

7 ) e

= '2-"9;-1*0.' O+a>02>06 -« ' 23)
; forg; —a <0
0 otherwise

where « is the half-width of the reflected beam.
The TIR for the Lambertian component is described by Kubelka—Munk theory? as given

by
Lo JE=-1- (5 + - l) I"(a) exp (—2‘3“% s Iﬁmd)
pr(a, Bsa) = , 24)
1 = P(@yexp (—2/% — 1 ﬁm.d)
where a is the albedo, d is the thickness of a film on a substrate with a known TIR,
1 1
Po = 2+ /L — 1
r@) = - e, o= (25)
Psub — % = % —1 Jﬁscn + ﬂahs

where pgp, is the TIR of the substrate (0 for a freestanding window) consistent with
Kubelka—Munk theory and S, is the scatter coefficient.

To complete the Kubelka—Munk model, a scatter coefficient model for the paint is needed.
A typical white paint is composed of a binder mixed with fine, nonabsorbing particles. This
produces a scattering medium. Anomalous diffraction theory yields a computationally
efficient and robust approximation to Mie theory and a model for the scatter coefficient.
The resulting extinction efficiency for a nonabsorbing spherical particle is

4 4
Qex(r) =2 — P sin(r’) + - cos(r)], (26)
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Fig. 4. In-plane BRDF of glossy white paint at 633 nm and an incidence angle of 10 deg.

where r' = 2(2mr, /Mno[(ny/no) — 11, rp is the radius of the spherical particle, n, is the
refractive index of the particle, and ny is the refractive index of the background medium. It
is bused on plane wave propagation through a spherical particle that is large compared to
the wavelength using Huygen’s principle.? It is also assumed that reflection and refraction
can be ignored {that is, [(n;/no) — 1] is small}.® Thus the theory emphasizes diffraction
and interference effects that often dominate scatter phenomenon.

Based on Eq. (26), the scatter coefficient also can be computed to be

co

Bua0) = f 772 Qen(r', M) dF, @7
0

where 7 is the size distribution function. Thus, if two transmittance measurements are made
with the same particles in different suspension media, the refractive index of the particles
can be derived without knowledge of the size distribution function of the particle by taking
a ratio of the measured scatter coefficients.

To compute the albedo, an absorption coefficient model for the binder is needed. The
model in this case uses an Urbach tail model for the UV absorption edge and an exponential
model for IR absorption edge.

4. Results

Figure 4 shows the BRDF for the unablated painted surface and one example of ab-
lated paint for a fluence of 2Jcm~2. Even though the unablated paint BRDF shows a
near-specular peak, it is less than 1% of the TIR. Once the ablation begins, the surface
becomes totally diffuse. Therefore, in the following analysis it is assumed that the paint
is always diffuse (this will not necessarily be the case for all targets of interest). Thus,
the Kubelka—Munk model is used solely for the TIR. The resulting model parameters for
the BRDF of the ablated paint for various fluence levels are listed in Tables 1-3 for 633-,
1,064, and 3,390-nm illumination, respectively. The tables also list the measured TIRs
for each fluence level. A plot of the TIRs versus the laser fluence is shown in Fig. 5a. A
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Fig. 5. (a) TIR at 633 nm plotted as a function of laser fluence at 800 nm. The solid curve
is based on the Kubelka—Munk model. (b) Surface absorptance as a function of the number
of laser pulses with 650 pJ/pulse.

TIR model, based on Kubelka—Munk theory, is also shown. The model assumes a paint
thickness of 0.1 cm, a substrate TIR of 0.925, a binder refractive index of 1.49, a paint
particle refractive index of 1.85 (e.g., alumina), and a paint particle radius of 2.7 um with
a concentration of 1.3 x 107 cm™3. As the fluence increases, some material is ablated
and carbon remains on the surface. The carbon film builds up with increasing fluence,
making the surface more absorptive. The following empirical formula for an effective
absorption coefficient (per centimeter) of carbon (soot) as a function of laser fluence is
used:
2

ﬂabs,carbon(F) . [1 — eXp <_%>:| (695 + 0075F), (28)

th

where Fy, = 0.57 Jem™? is the ablation threshold fluence. The first factor in the equation
represents a threshold function for the generation of carbon and for paint surface damage.
The second factor represents the increase in the absorption coefficient caused by the depo-
sition of carbon during laser ablation. The model parameters are determined empirically
by fitting to the experimental data. The absorption coefficient model is well below the full
density value for carbon because a small nonuniform amount of carbon is generated, which
is concentrated on the surface rather than throughout the paint thickness. Figure 5a shows
that Eq. (28) is in good agreement with the measured data. Based on this model for the TIR,
the absorptance can be obtained by subtracting the TIR from unity. This result is plotted in
Fig. 5b as a function of the number of laser pulses that illuminate the entire area of interest.

Equation (27) deserves some explanation. The threshold function contains an Arrhenius-

type potential of the general form
E,
exp|—— ),
p Eq
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Fig. 6. (a) TIR at 1,064 nm plotted as a function of laser fluence at 800 nm. The solid curve
is based on the Kubelka—Munk model. (b) Surface absorptance as a function of the number
of laser pulses with 650 pJ/pulse.
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Fig. 7. The TIR of the paint as a function of wavelength for different levels of fluence.

where E, is photon energy on the target and E is a damage threshold energy. The photon
field energy is

E, = M,hf,

where M, is the number of photons, 4 is Planck’s constant, and f'is the photon frequency.
Because multiphoton absorption is the typical damage mechanism for dielectric media, we
consider a two-photon absorption rate equation, as given by

M,=M,~yl, (29)
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where y is a rate factor and I is the intensity in watts per square centimeter. The fluence is
intensity times the duration of the radiation. Thus, the photon energy is proportional to the
square of the fluence. This explains the form of the threshold function in Eq. (28).

Figure 6 compares the TIR model as a function of wavelength for various ablation levels
to experimental data at 633, 1,064, and 3,390 nm. The model predicts the TIR at 800 nm
where the ablating laser actually operated. In fact, the entire near-IR region is covered by
the model. This is an initial attempt at developing a more complete quantitative engineering
model for target absorption characteristics related to the illuminating laser fluence.

5. Conclusions

A relatively simple, semiempirical model is applied to represent the absorbance of an
ablated paint as a function of wavelength and laser fluence. The model distinguishes between
near-specular and diffuse reflectance. This is important because the TIR is very different
for each case. An averaged Fresnel coefficient is used for the near-specular component, and
Kubelka-Munk theory is used for the diffuse case. For the paint studied here, the reflectance
was essentially diffuse; thus Kubelka—Munk theory is emphasized. The model is intended
to provide a quantitative approach to model laser coupling into painted surfaces.

Future work needs to be done on the optical properties of carbon soot generated by laser
ablation, the amount of carbon generated for particular binders, and the spatial distribution.
This will make the model less empirical and more applicable to other surfaces.
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